cda

数字化人才认证

首页 > 行业图谱 >

机器学习之人工神经网络算法

机器学习之人工神经网络算法
2019-04-17
机器学习中有一个重要的算法,那就是人工神经网络算法,听到这个名称相信大家能够想到人体中的神经。其实这种算法和人工神经有一点点相似。当然,这种算法能够解决很多的问题,因此在机器学习中有着很高 ...

机器学习中常见算法优缺点之朴素贝叶斯算法

机器学习中常见算法优缺点之朴素贝叶斯算法
2019-04-01
在机器学习中有很多算法,而有一种算法有着坚实的数学背景,并且被广泛使用,这种算法就是朴素贝叶斯算法。当然,朴素贝叶斯算法的优点有很多,但这种算法的缺点也是我们不能忽视的,那么大家知道不知道 ...

机器学习中涉及到哪些数学工具?

机器学习中涉及到哪些数学工具?
2019-03-27
在机器学习中涉及到很多的工具,其中最重要的当属数学工具。机器学习涉及到的数据工具总共有三种,分别是线性代数、概率统计和最优化理论。在这篇文章中我们就来详细给大家介绍一下这些知识,让大家在日 ...

机器学习的方法之回归算法

机器学习的方法之回归算法
2019-03-18
我们都知道,机器学习是一个十分实用的技术,而这一实用的技术中涉及到了很多的算法。所以说,我们要了解机器学习的话就要对这些算法掌握通透。在这篇文章中我们就给大家详细介绍一下机器学习中的回归算 ...

机器学习算法之神经网络

机器学习算法之神经网络
2019-03-15
在学习了机器学习的相关知识以后,我们知道其中的算法有很多种,比如回归算法、K近邻算法等等,这些都是需要大家掌握的算法,而神经网络算法是一个十分实用的算法,在这篇文章中我们就给大家介绍一下机器 ...

机器学习算法中的SVM和聚类算法

机器学习算法中的SVM和聚类算法
2019-03-15
相信大家都知道,机器学习中有很多的算法,我们在进行机器学习知识学习的时候一定会遇到过很多的算法,而机器学习中的SVM算法和聚类算法都是比较重要的,我们在这篇文章中就重点给大家介绍一下这两种算 ...

机器学习中各个算法的优缺点(二)

机器学习中各个算法的优缺点(二)
2019-03-13
机器学习中有很多的算法,具体来说包括正则化算法、集成算法、决策树算法、回归、人工神经网络、深度学习、支持向量机、降维算法、聚类算法、基于实例的算法、贝叶斯算法、关联规则学习算法、图模型,我 ...

学了这些知识,我们才能够成为数据分析师

学了这些知识,我们才能够成为数据分析师
2019-02-28
前不久,家里人给我安排相亲,听说是一个数据分析师!?纳尼....数据分析师?听起来感觉好高大上啊,在大学期间我听说过数据分析师这个职业,现在的数据分析师的前景是十分广阔的,同时数据分析师的工资 ...

机器学习的步骤都有哪些(二)

机器学习的步骤都有哪些(二)
2019-02-19
在上一篇文章中我们给大家介绍了机器学习的步骤,机器学习中的步骤有三个,第一就是表示,第二就是评价,第三就是优化。上一篇文章中我们给大家介绍了机器学习的第一个步骤——表示,而表示还涉及到了一 ...

入行数据科学一定要有研究生学历吗?

入行数据科学一定要有研究生学历吗?
2019-01-11
作者 | Jeremie Harris 翻译 | Mika CDA 数据分析师原创作品,转载需授权 首先我要说的是,我是一名博士肄业生。 这个头衔给我带来了所谓的光环,它暗示我在研究生院待过,做过一些学术 ...

学数据分析需要学的知识详解(四)

学数据分析需要学的知识详解(四)
2018-12-14
我们在上一篇文章中给大家讲了数据预处理、概率论和统计这两方面的知识,这两个模块在数据分析中也是十分重要的。当然了学会这些去分析数据的时候还是不够的,因为这些知识去分析数据还差点火候,还需要 ...

机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)

机器学习中的损失函数 (着重比较:hinge loss vs softmax loss)
2018-08-26
机器学习中的损失函数 (着重比较:hinge loss vs softmax loss) 1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值f(x) 与真实值Y的不一致程度,它是一个非负实值函数,通常用L(Y,f(x)) ...

机器学习中几个常见模型的优缺点

机器学习中几个常见模型的优缺点
2018-08-20
机器学习中几个常见模型的优缺点 朴素贝叶斯:优点:对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点:对输入数据的表达形式很敏感(连续数据的处理方式)。 决策树:优点:计算量简单, ...

在实际项目中,如何选择合适的机器学习模型

在实际项目中,如何选择合适的机器学习模型
2018-08-20
在实际项目中,如何选择合适的机器学习模型 在这个文章中,我们主要面向初学者或中级数据分析师,他们对识别和应用机器学习算法都非常感兴趣,但是初学者在面对各种机器学习算法时,都会遇到一个问题是 “在实 ...

我是R语言小白带你建模之adaboost建模

我是R语言小白带你建模之adaboost建模
2018-08-16
我是R语言小白带你建模之adaboost建模 今天更新我用我蹩脚的R技能写的一个adaboost建模的过程,代码有参考别人的代码再根据自己的思路做了更改。代码一部分来自书籍《实用机器学习》,我个人特别喜欢这本书 ...

我的R语言小白之梯度上升和逐步回归的结合使用

我的R语言小白之梯度上升和逐步回归的结合使用
2018-08-16
我的R语言小白之梯度上升和逐步回归的结合使用 我们今天的主题通常在用sas拟合逻辑回归模型的时候,我们会使用逐步回归,最优得分统计模型的等方法去拟合模型。而在接触机器学习算法用R和python实践之后,我们 ...

机器学习中的损失函数

机器学习中的损失函数
2018-08-13
机器学习中的损失函数 损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是 ...

机器学习中的参数与超参数之间的区别

机器学习中的参数与超参数之间的区别
2018-08-13
机器学习中的参数与超参数之间的区别 机器学习中的模型参数和模型超参数在作用、来源等方面都有所不同,而模型超参数常被称为模型参数,这样,很容易对初学者造成混淆。本文给出了模型参数和模型超参数的定义 ...

数据模型需要多少训练数据

数据模型需要多少训练数据
2018-07-27
数据模型需要多少训练数据 毫无疑问机器学习是大数据分析不可或缺的一部分,在使用机器学习技术的时候工程师除了要选择合适的算法之外还需要选择合适的样本数据。那么工程师到底应该选择哪些样本数据、选择多 ...

R语言基本数据分析

R语言基本数据分析
2018-07-23
R语言基本数据分析 本文基于R语言进行基本数据统计分析,包括基本作图,线性拟合,逻辑回归,bootstrap采样和Anova方差分析的实现及应用。 不多说,直接上代码,代码中有注释。 1. 基本作图(盒图,qq图) &nbs ...

OK