京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在机器学习的过程中,我们需要对机器学习有个深入的了解,才能够更有把握地驾驭机器学习,但是有很多朋友由于不会选择算法或者不懂得其中的知识从而跳进陷阱,白白浪费了时间和精力而无果。在这篇文章中我们就重点给大家介绍一下关于机器学习中需要我们知道的必备知识。
我们在进行机器学习的过程中需要了解偏差和方差,在统计学中,一个模型好坏,是根据偏差和方差来衡量的,所以我们有必要了解偏差和方差的知识,首先偏差描述的是预测值(估计值)的期望E与真实值Y之间的差距。偏差越大,越偏离真实数据。而方差描述的是预测值P的变化范围,离散程度,是预测值的方差,也就是离其期望值E的距离。方差越大,数据的分布越分散。
一般情况下,如果是小训练集,高偏差/低方差的分类器要比低偏差/高方差大分类的优势大,因为后者会发生过拟合。然而,随着你训练集的增长,模型对于原数据的预测能力就越好,偏差就会降低,此时低偏差/高方差的分类器就会渐渐的表现其优势,而高偏差分类器这时已经不足以提供准确的模型了。
机器学习中你需要知道的事——算法怎么选
那么我们如何选择出一个合适的算法呢?其实算法我们首先应该选择的就是逻辑回归,倘若它的效果不显著,那么可以将它的结果作为基准来参考,在基础上与其他算法进行比较。然后我们试试决策树或者随机森林的知识看看是否可以大幅度提升你的模型性能。即便最后我们并没有把它当做为最终模型,我们也可以使用随机森林来移除噪声变量,做特征选择。当然如果特征的数量和观测样本特别多,那么当资源和时间充足时,使用SVM不失为一种选择。而现在深度学习很热门,很多领域都用到,它是以神经网络为基础的。而算法固然重要,但好的数据却要优于好的算法,设计优良特征是大有好处的。假如我们有一个超大数据集,那么无论我们使用哪种算法可能对分类性能都没太大影响。
在这篇文章中我们给大家介绍了机器学习涉及的偏差和方差的相关内容,同时也给大家介绍了如何选择出一个合适的算法。这些知识都是能够帮助大家更好地理解机器学习和掌握机器学习的,所以说我们在学习机器学习或进行机器学习领域工作时一定要注意算法的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06