
一、案例综述
案例编号:102006
案例名称:中英文垃圾短信过滤
作者姓名(或单位、或来源):朱江
案例所属行业:J631 电信
案例所用软件:R
案例包含知识点:中英文文本数据处理 朴素贝叶斯分类
案例描述:
目前全球范围内手机已经不成不可替代的生活必需品,而短信和微信成为人们日常沟通的主要方式,其中广告商利用短信服务(SMS)文本信息,以潜在消费者为目标,给他们发送不需要的广告信息。目前垃圾短信可以实现对固定区域内特定手机号码段的用户群发,并且手机号信息泄露极其严重。这些都导致手机用户特别是老的手机用户收到垃圾短信的频率较高,故垃圾短信和正常短信的分类不管是对于运营商还是对于客户来说都是较为有利的工具。
朴素贝叶斯已经成功的用于垃圾邮件的过滤,所以它很有可能用于垃圾短信的过滤。然而,相对于垃圾邮件来说,垃圾短信的自动过滤有额外的挑战:由于短信文本数的限制,所以一条短信是否是垃圾信息的文本量减少了;短信的口语化导致文本可能极其不规整,尤其是中文文本,会带来文本处理的难度;缩写的形式在中英文文本中都较为普遍,而且中文文本中新兴词汇的使用,都会模糊合法信息和垃圾信息的界限。
本案例包含已经添加好标签的英文短信数据和中文短信数据,英文数据有5559条,可以进行全数据处理,数据文件不是很大。而中文短信有80万条的信息,信息量较大,在处理过程中会生成130多G的稀疏矩阵,远超出R的内存限制,且中文文本处理更为麻烦,故这里按照短信长度正常短信和垃圾短信分别取前1000条进行分类建模
本案例知识点没有办法细分,因为文本处理过程中生成的文本文件都比较大,会加大内存消耗,且建模前的稀疏矩阵存储读取都需要转格式较为繁琐,故这里我们英文短信分类作为一个知识点,中文短信分类作为一个知识点。
本案例共包含两个个知识点
1英文短信文本读取、清洗、词云、建模、评估
2中文短信文本读取、清洗、词云、建模、评估
案例执行形式:
单人上机
二、案例知识点
知识点1:
知识点名称:英文短信文本读取、清洗、词云、建模、评估
知识点所属工作角色:文本处理 文本挖掘 词云 朴素贝叶斯分类 分类模型评估
知识点背景:英文文本挖掘过程中常见的文本预处理,朴素贝叶斯属于一种比较简单的分类模型。
知识点描述:
涉及到英文文本处理中的去除无关字符、大小写转换、去除停用词、去除空白、词汇修剪(stem)
知识点关键词:
文本处理 文本挖掘 词云 朴素贝叶斯分类 分类模型评估
知识点所用软件:
Rstudio
操作目的:
英文短信文本读取、清洗、词云、建模、评估
知识点素材(包括数据):
sms_spam.csv
操作步骤:
读取文件,将其中的type列转化为因子
可见其中正常短信共有4812条,垃圾短信有747条。
将所有的文本信息构建成语料库,并且打印出未经处理的前十条信息
构建去除非子母类字符的函数,用空格替换
使用大写变小写、去除停用词、去除多余空格以及上面构建的函数转换语料库,并且观察转换后的前十条信息
将原数据分为训练集和测试集,其中训练集占75%,测试集占25%。
查看训练集和测试集中垃圾信息占比是否近似
可见占比都在13%左右
将语料库同样分为训练集测试集,方便后面构建文档词矩阵使用
分别对所有训练集,训练集中垃圾信息,训练集中正常信息创建词云
所有训练集信息的词云:
训练集中的垃圾信息的词云:
训练集中正常信息的词云:
筛选出现在大于等于5条短信中的词,由训练语料库和测试语料库生成文档词矩阵(稀疏矩阵),根据筛选出的词筛选稀疏矩阵的列
将文档词矩阵中所有大于0的数字替换为“yes”,0替换为“no”,得到训练矩阵train和测试矩阵test
使用朴素贝叶斯对训练矩阵建模,通过测试矩阵预测出分类,然后评估模型的性能
得到的结果中,正常短信中错误的将垃圾信息预测为正常信息的占比为12.7%,垃圾短信中错误的将正常信息预测为垃圾信息的占比为85%,可见模型性能一般,需要更多的初期工作,例如更多的数据采集,词汇处理上更多的选择等等
操作结果:
得到训练集中不同类型短信的词云;将测试集的短信分类。
知识点小结:
本知识点显示了英文文本清洗及转换为文档词矩阵的全套流程,以及使用朴素贝叶斯进行分类和评估的全套流程。
知识点2:
知识点名称:中文短信文本读取、清洗、词云、建模、评估
知识点所属工作角色:
文本处理 文本挖掘 词云 朴素贝叶斯分类 分类模型评估
知识点背景:
中文文本挖掘过程中常见的文本预处理,朴素贝叶斯属于一种比较简单的分类模型。
知识点描述
涉及到中文文本处理中的去除无关字符、去除停用词、去除空白、分词
知识点关键词:
文本处理 文本挖掘 词云 朴素贝叶斯分类 分类模型评估
知识点所用软件:
Rstudio
操作目的:
中文短信文本读取、清洗、词云、建模、评估
知识点素材(包括数据):
sms_labelled.txt stop.txt
操作步骤:
操作步骤:
读取文件,用readLines按行读取
抽取每行文本中的标签信息、短信信息、计算短信长度、合并成一个表格
可见其中第一列是标签,0表示正常信息,1表示垃圾信息
按文本长度由长到短排列所有信息,选取正常信息和垃圾信息中的前一千条
将标签变量type0重新命名为“ham”和“spam”
训练集中的垃圾信息的词云:
训练集中正常信息的词云:
筛选出现在大于等于5条短信中的词,由训练语料库和测试语料库生成文档词矩阵(稀疏矩阵),根据筛选出的词筛选稀疏矩阵的列
将文档词矩阵中所有大于0的数字替换为“yes”,0替换为“no”,得到训练矩阵train和测试矩阵test
使用朴素贝叶斯对训练矩阵建模,通过测试矩阵预测出分类,然后评估模型的性能
得到的结果中,虽然只有200条短信,正常短信中错误的将垃圾信息预测为正常信息的占比为25%,垃圾短信中错误的将正常信息预测为垃圾信息的占比为15.5%,可见模型性能较英文模型有了不错的提升
操作结果:
得到训练集中不同类型短信的词云;将测试集的短信分类。
知识点小结:
本知识点显示了中文文本清洗及转换为文档词矩阵的全套流程,以及使用朴素贝叶斯进行分类和评估的全套流程。
在词云中观察到有乱码,可能是由于txt存储类型不是UTF-8编码,可以打开txt源文件另存为指定编码来处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29