京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、案例综述
案例编号:102006
案例名称:中英文垃圾短信过滤
作者姓名(或单位、或来源):朱江
案例所属行业:J631 电信
案例所用软件:R
案例包含知识点:中英文文本数据处理 朴素贝叶斯分类
案例描述:
目前全球范围内手机已经不成不可替代的生活必需品,而短信和微信成为人们日常沟通的主要方式,其中广告商利用短信服务(SMS)文本信息,以潜在消费者为目标,给他们发送不需要的广告信息。目前垃圾短信可以实现对固定区域内特定手机号码段的用户群发,并且手机号信息泄露极其严重。这些都导致手机用户特别是老的手机用户收到垃圾短信的频率较高,故垃圾短信和正常短信的分类不管是对于运营商还是对于客户来说都是较为有利的工具。
朴素贝叶斯已经成功的用于垃圾邮件的过滤,所以它很有可能用于垃圾短信的过滤。然而,相对于垃圾邮件来说,垃圾短信的自动过滤有额外的挑战:由于短信文本数的限制,所以一条短信是否是垃圾信息的文本量减少了;短信的口语化导致文本可能极其不规整,尤其是中文文本,会带来文本处理的难度;缩写的形式在中英文文本中都较为普遍,而且中文文本中新兴词汇的使用,都会模糊合法信息和垃圾信息的界限。
本案例包含已经添加好标签的英文短信数据和中文短信数据,英文数据有5559条,可以进行全数据处理,数据文件不是很大。而中文短信有80万条的信息,信息量较大,在处理过程中会生成130多G的稀疏矩阵,远超出R的内存限制,且中文文本处理更为麻烦,故这里按照短信长度正常短信和垃圾短信分别取前1000条进行分类建模
本案例知识点没有办法细分,因为文本处理过程中生成的文本文件都比较大,会加大内存消耗,且建模前的稀疏矩阵存储读取都需要转格式较为繁琐,故这里我们英文短信分类作为一个知识点,中文短信分类作为一个知识点。
本案例共包含两个个知识点
1英文短信文本读取、清洗、词云、建模、评估
2中文短信文本读取、清洗、词云、建模、评估
案例执行形式:
单人上机
二、案例知识点
知识点1:
知识点名称:英文短信文本读取、清洗、词云、建模、评估
知识点所属工作角色:文本处理 文本挖掘 词云 朴素贝叶斯分类 分类模型评估
知识点背景:英文文本挖掘过程中常见的文本预处理,朴素贝叶斯属于一种比较简单的分类模型。
知识点描述:
涉及到英文文本处理中的去除无关字符、大小写转换、去除停用词、去除空白、词汇修剪(stem)
知识点关键词:
文本处理 文本挖掘 词云 朴素贝叶斯分类 分类模型评估
知识点所用软件:
Rstudio
操作目的:
英文短信文本读取、清洗、词云、建模、评估
知识点素材(包括数据):
sms_spam.csv
操作步骤:
读取文件,将其中的type列转化为因子
可见其中正常短信共有4812条,垃圾短信有747条。
将所有的文本信息构建成语料库,并且打印出未经处理的前十条信息


构建去除非子母类字符的函数,用空格替换

使用大写变小写、去除停用词、去除多余空格以及上面构建的函数转换语料库,并且观察转换后的前十条信息


将原数据分为训练集和测试集,其中训练集占75%,测试集占25%。

查看训练集和测试集中垃圾信息占比是否近似

可见占比都在13%左右
将语料库同样分为训练集测试集,方便后面构建文档词矩阵使用

分别对所有训练集,训练集中垃圾信息,训练集中正常信息创建词云
所有训练集信息的词云:


训练集中的垃圾信息的词云:
训练集中正常信息的词云:


筛选出现在大于等于5条短信中的词,由训练语料库和测试语料库生成文档词矩阵(稀疏矩阵),根据筛选出的词筛选稀疏矩阵的列

将文档词矩阵中所有大于0的数字替换为“yes”,0替换为“no”,得到训练矩阵train和测试矩阵test

使用朴素贝叶斯对训练矩阵建模,通过测试矩阵预测出分类,然后评估模型的性能


得到的结果中,正常短信中错误的将垃圾信息预测为正常信息的占比为12.7%,垃圾短信中错误的将正常信息预测为垃圾信息的占比为85%,可见模型性能一般,需要更多的初期工作,例如更多的数据采集,词汇处理上更多的选择等等
操作结果:
得到训练集中不同类型短信的词云;将测试集的短信分类。
知识点小结:
本知识点显示了英文文本清洗及转换为文档词矩阵的全套流程,以及使用朴素贝叶斯进行分类和评估的全套流程。
知识点2:
知识点名称:中文短信文本读取、清洗、词云、建模、评估
知识点所属工作角色:
文本处理 文本挖掘 词云 朴素贝叶斯分类 分类模型评估
知识点背景:
中文文本挖掘过程中常见的文本预处理,朴素贝叶斯属于一种比较简单的分类模型。
知识点描述
涉及到中文文本处理中的去除无关字符、去除停用词、去除空白、分词
知识点关键词:
文本处理 文本挖掘 词云 朴素贝叶斯分类 分类模型评估
知识点所用软件:
Rstudio
操作目的:
中文短信文本读取、清洗、词云、建模、评估
知识点素材(包括数据):
sms_labelled.txt stop.txt
操作步骤:
操作步骤:
读取文件,用readLines按行读取

抽取每行文本中的标签信息、短信信息、计算短信长度、合并成一个表格


可见其中第一列是标签,0表示正常信息,1表示垃圾信息
按文本长度由长到短排列所有信息,选取正常信息和垃圾信息中的前一千条

将标签变量type0重新命名为“ham”和“spam”








训练集中的垃圾信息的词云:


训练集中正常信息的词云:


筛选出现在大于等于5条短信中的词,由训练语料库和测试语料库生成文档词矩阵(稀疏矩阵),根据筛选出的词筛选稀疏矩阵的列

将文档词矩阵中所有大于0的数字替换为“yes”,0替换为“no”,得到训练矩阵train和测试矩阵test

使用朴素贝叶斯对训练矩阵建模,通过测试矩阵预测出分类,然后评估模型的性能


得到的结果中,虽然只有200条短信,正常短信中错误的将垃圾信息预测为正常信息的占比为25%,垃圾短信中错误的将正常信息预测为垃圾信息的占比为15.5%,可见模型性能较英文模型有了不错的提升
操作结果:
得到训练集中不同类型短信的词云;将测试集的短信分类。
知识点小结:
本知识点显示了中文文本清洗及转换为文档词矩阵的全套流程,以及使用朴素贝叶斯进行分类和评估的全套流程。
在词云中观察到有乱码,可能是由于txt存储类型不是UTF-8编码,可以打开txt源文件另存为指定编码来处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26