京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在做回归分析,但是对统计学不熟悉,请问高人,当我用spss做线性回归,得出的结果是调整后的R方值很小,只有0.11或者0.15这样子大,但是回归方程显著,—T值显著,F值也显著。那我的回归模型有意义么。比如说,我分析饮酒态度对饮酒行为的回归作用,得出的回归模型显著,但是R方值很小,那我能说饮酒态度对饮酒行为有显著的回归作用么。
应该怎么看回归分析的结果呢,请专业人士系统指点一二。
解答:
Honestly, the relationship between attitude and behavior is tenous! !
Mostly, the relationship between attitude and behavior is mediated by behavior intention.
R^2很小得谨慎,说明你选的解释变量解释能力不足,有可能有其他重要变量被纳入到误差项。可尝试寻找其他相关变量进行多元回归
Adding more relavant variables or just taking variable transformation(log/quadratic/interraction term); Then running model selection procedure (forward/backward stepwise, or lasso algorithm) to pick out the best one
|
很正常!我还见过高级期刊发表的论文中还有R-square不到5%的呢!一般样本如果很大,R-square超过10%就很不错了
啊,真的么,我最近也遇到这类问题,我把x, y做简单的线性回归模型,假设为y=a+bx,R-square都很小,0.2左右,但是F都挺大的,P也很小,这样就可以说明x,y是具有相关性么, 这样的结果能发表刊物么?还有当我把x,y做标准回归方程的时候,截距设为0 的话,y=b’x,这样得到的相关系数b’和前者的简单线性回归得到的回归系数b在统计学上的解释有何不同,谢谢您了! |
显著但是R值小,要考虑不同的专业背景。
有的专业确实比较小,楼主的例子,我觉得这个大小就能接受了。
态度与行为之间的影响因素非常多,态度能解释行为11-15%已经不小了。
R-square measures the proportion or percentage of the total variation in Y explained by the regression model. If the model is significant but R-square is small, it means that observed values are widely spread around the regression line.
在社会学和行为学领域,R方一般都很小的,这个应该不影响模型
态度与行为之间的影响因素非常多,态度能解释行为11-15%已经不小了
R^2很小说明你选的解释变量解释能力不足,有可能有其他重要变量被纳入到误差项。可尝试寻找其他相关变量进行多元回归
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08