京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、前言
计算和互联网技术的广泛运用极大地提高了数据的可获得性,使大量的数据得以收集、保存和整理。与此同时,计量经济学在整个经济学体系中的地位日益提升。在顶级经济学杂志的论文中,应用计量论文已占到了相当高的比例。正是在这些背景之下,面板数据受到了越来越多经济研究人员的欢迎,面板数据的应用研究亦成为热点。
面板数据成为研究的热点一方面自然是因为本身优秀的特质;另一方面也归因于面板数据在应用过程中仍有许多问题和未知领域需要去探索。在面板数据回归分析中,如果存在异方差,最小二乘估计出的系数尽管是线性、无偏和一致的,但不是有效的,甚至不是渐进有效的。这些影响将导致参数估计和假设检验失效。
二、异方差产生的原因
异方差产生的因素很多,比如模型中省略了某些重要的解释变量,模型形式设定不准确,样本数据中存在的测量误差,异常值的出现,截面个体之间的差异等。面板数据是具有时序和截面双重性质的数据形式,异方差不仅会出现在时间序列上还将出现在横截面序列上,所以面板数据模型中的异方差问题要比单纯的时间序列或截面数据模型要复杂得多。
三、面板数据异方差处理方法
实际上,在处理面板数据线性回归时,主要考虑固定效应模型与pooled OLS的异方差问题。因为随机效应模型使用GLS估计,本身就已经控制了异方差。
Huber (1967)、Eicker (1967) 和 White (1980)提出了异方差—稳健方差矩阵估计,该方法能够在考虑异方差情况下求出稳健标准误。利用异方差稳健标准误对回归系数进行t检验和F检验都是渐近有效的。这就意味着,如果出现异方差,仍然可以使用OLS回归,只需结合使用稳健标准误即可。在STATA中,异方差—稳健标准误可以在“reg”或者“xtreg”语句后,加选择性命令“robust”即可得到。但是这一方法有一个假设的前提:残差项是独立分布的。
Parks(1967)提出了可行广义最小二乘法(FGLS),一般用于随机效应模型估计。基本思路是:先估计固定效应模型,得到〖个体误差项方差σ〗_ε^2 的估计值〖 σ ?〗_ε^2。继而估计混合OLS模型,利用其残差和第一步得到的〖 σ ?〗_ε^2,即可估计出总体误差项的方差σ ?_μ^2 。FGLS 估计量在N→∞或T→∞或二者都成立的情况下,都是渐进有效的。在STATA中,运用可行广义最小二乘法的命令是:xtgls。FGLS 要比“OLS+稳健标准误”处理异方差的方法更为有效,特别是在大样本的情况下。但是在更一般的情况下,“OLS+稳健标准误”比FGLS稳健,因为前者不需要估计条件方差函数的形式。
Beck and Katz (1995) 认为FGLS产生的标准误过小。为解决这一影响,他们提出了面板校正标准误(PCSE)来估计OLS的系数。在STATA中,带PCSE的pooled OLS可以由xtpcse获得。但是PCSE仅为T→∞时渐进有效的。当T/N 较小时,这一方法则不够精确。
Driscoll& Kraay (1998)提出了在N→∞的情况下渐近有效的非参数协方差矩阵估计方法,能够获得控制异方差和自相关的一致标准误,克服了PCSE在N→∞情况下不够准确的问题。在STATA中,获得Driscoll&Kraay 标准误的命令是xtscc。需要说明的是,xtscc只适用于估计pooled OLS和固定效应(组内)回归模型。
四、结论
通过以上比较分析可以看出,仅仅从方法上去比较处理异方差的方式孰优孰劣是不够的,还要结合样本情况、模型设置以及个人的追求偏好(如追求稳健或追求有效的偏好)进行选择。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23