
在做回归分析,但是对统计学不熟悉,请问高人,当我用spss做线性回归,得出的结果是调整后的R方值很小,只有0.11或者0.15这样子大,但是回归方程显著,—T值显著,F值也显著。那我的回归模型有意义么。比如说,我分析饮酒态度对饮酒行为的回归作用,得出的回归模型显著,但是R方值很小,那我能说饮酒态度对饮酒行为有显著的回归作用么。
应该怎么看回归分析的结果呢,请专业人士系统指点一二。
解答:
Honestly, the relationship between attitude and behavior is tenous! !
Mostly, the relationship between attitude and behavior is mediated by behavior intention.
R^2很小得谨慎,说明你选的解释变量解释能力不足,有可能有其他重要变量被纳入到误差项。可尝试寻找其他相关变量进行多元回归
Adding more relavant variables or just taking variable transformation(log/quadratic/interraction term); Then running model selection procedure (forward/backward stepwise, or lasso algorithm) to pick out the best one
很正常!我还见过高级期刊发表的论文中还有R-square不到5%的呢!一般样本如果很大,R-square超过10%就很不错了
啊,真的么,我最近也遇到这类问题,我把x, y做简单的线性回归模型,假设为y=a+bx,R-square都很小,0.2左右,但是F都挺大的,P也很小,这样就可以说明x,y是具有相关性么, 这样的结果能发表刊物么?还有当我把x,y做标准回归方程的时候,截距设为0 的话,y=b’x,这样得到的相关系数b’和前者的简单线性回归得到的回归系数b在统计学上的解释有何不同,谢谢您了! |
显著但是R值小,要考虑不同的专业背景。
有的专业确实比较小,楼主的例子,我觉得这个大小就能接受了。
态度与行为之间的影响因素非常多,态度能解释行为11-15%已经不小了。
R-square measures the proportion or percentage of the total variation in Y explained by the regression model. If the model is significant but R-square is small, it means that observed values are widely spread around the regression line.
在社会学和行为学领域,R方一般都很小的,这个应该不影响模型
态度与行为之间的影响因素非常多,态度能解释行为11-15%已经不小了
R^2很小说明你选的解释变量解释能力不足,有可能有其他重要变量被纳入到误差项。可尝试寻找其他相关变量进行多元回归
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01