京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在python数据清洗过程中,我们经常会遇到一些偏离正常范围的数据,例如人的体重为56吨,这些数据叫做异常值,如果不做异常值处理,会对我们最终的数据分析造成影响。小编今天给大家带来了一种很实用的异常值处理方法—3σ原则,希望对大家有所帮助。
一、哪些数据是异常值
异常值,指的是数据集中存在不合理的值,又叫做离群点。异常值处理就是要将这些离群点找出来,然后进行分析,并确定如何处理,采用何种方式处理。
二、异常值出现原因
1.传感器故障
2.数据录入错误
3.异常事件
三、3σ原则异常值处理
1.正态分布
数据服从正态分布。正态分布,又叫做高斯分布。特征为中间高两边低左右对称。
正态分布特性:
1)集中性:曲线的最高峰位于正中央,并且位置为均数所在的位置。
2)对称性:以均数所在的位置为中心呈左右对称,并且曲线两段无限趋近于横轴。
3)均匀变动性:正态分布曲线以均数所在的位置为中心均匀向左右两侧下降。
正态分布函数公式如下:
2.3σ原则
3σ原则是建立在正态分布的等精度重复测量基础上而造成奇异数据的干扰或噪声难以满足正态分布。如果一组测量数据中的某个测量值的残余误差的绝对值 νi>3σ,则该测量值为坏值,应剔除.通常把等于 ±3σ的误差作为极限误差,对于正态分布的随机误差,落在 ±3σ以外的概率只有 0.27%,它在有限次测量中发生的可能性很小,故存在3σ准则.3σ准则是最常用也是最简单的粗大误差判别准则,它一般应用于测量次数充分多( n ≥30)或当 n>10做粗略判别时的情况.
σ代表标准差,μ代表均值
样本数据服从正态分布的情况下
数值分布在(μ-σ,μ+σ)中的概率为0.6826
数值分布在(μ-2σ,μ+2σ)中的概率为0.9544
数值分布在(μ-3σ,μ+3σ)中的概率为0.9974
可以认为,Y 的取值几乎全部集中在(μ-3σ,μ+3σ)区间内,超出这个范围的可能性仅占不到0.3%。
3.python实现
#用numpy随机生成100个服从正态分布的随机数 num=np.random.randn(100) #随机插入两个异常值进去,此时num.shape[0]==102 np.apend(num,[10,20]) #设定法则的左右边界 left=num.mean()-3*num.std() right=num.mean()+3*num.std() #获取在范围内的数据 new_num=num[(left异常值<="" pre="">
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09