
提到噪声,你会想到什么?刺耳的,高分贝的声音?总之就是不好的,不想接受的声音。小编今天跟大家分享的就是python数据清洗中的噪声数据,对于这些噪声数据我们应该怎样检测和处理呢?下面跟小编一起来看吧。
一、什么是噪声数据
噪声数据Noisy Data,噪声值,指的是数据中存在着一个或中者几个错误的,或者偏离期望值的数据,又可以叫做异常值、或者离群值(outlier),这些数据会对数据的分析造成了干扰,我们需要在python数据清洗时将这些数据清洗掉。
举一个最简单的例子来理解噪声数据,在一份统计顾客年龄的名单中,有数据为顾客年龄:-50.显然这个数据就是噪声数据。
二、噪声数据检测
噪声数据的检测方法有很多,小编这这里介绍三种最常用的方法。
1.3∂原则
数据需要服从正态分布。若一个数据分布近似正态,则大约 68% 的数据值会在均值的一个标准差范围内,大约 95% 会在两个标准差范围内,大约 99.7% 会在三个标准差范围内。在3∂原则下,异常值如超过3倍标准差,那么可以将其视为异常值。如果数据不服从正态分布,我们就可以通过远离平均距离多少倍的标准差来判定(多少倍的取值需要根据经验和实际情况来决定)。
2.箱线图是通过数据集的四分位数形成的图形化描述。是非常简单而且效的可视化离群点的一种方法。上下须为数据分布的边界,只要是高于上须,或者是低于下触须的数据点都可以认为是离群点或异常值。
下四分位数:25%分位点所对应的值(Q1)
中位数:50%分位点对应的值(Q2)
上四分位数:75%分位点所对应的值(Q3)
上须:Q3+1.5(Q3-Q1)
下须:Q1-1.5(Q3-Q1)
其中Q3-Q1表示四分位差
3.k-means
k-means是基于聚类的离群点识别方法,其主要思想是一个对象是基于聚类的离群点,如果该对象不强属于任何簇,那么该对象属于离群点。
三、噪声数据处理
噪声数据最直接简单的方法是:找到这些孤立于其他数据的记录直接删除。但是这样做有很大的缺点,很可能会都是大量有用、干净的信息。小编在这里整理了几种python数据清洗时常用的噪声数据处理方法,希望对大家有所帮助。
1.分箱
分箱法通过考察数据的“近邻”来光滑有序数据的值。有序值分布到一些桶或箱中。
分箱法包括等深分箱:每个分箱中的样本量一致;等宽分箱:每个分箱中的取值范围一致。直方图其实首先对数据进行了等宽分箱,再计算频数画图。
分箱方法是一种简单而且常用的python数据清洗方法,通过考察近邻数据来确定最终值。“分箱”其实也就是指按照属性值划分的子区间,一个属性值如果处于某个子区间范围内,就当做把该属性值放进这个子区间所代表的“箱子”内。按照一定的规则将待处理的数据(某列属性值)放进一些箱子中,考察每个箱子里的数据,并且采用某种方法对各个箱子中的数据分别进行处理。采用分箱技术的两个关键问题是:(1)如何分箱(2)如何对每个箱子中的数据进行平滑处理。
分箱的方法通常有4种,分别为:等深分箱法、等宽分箱法、最小熵法和用户自定义区间法。
(1)等深分箱法,又叫做统一权重,是指将数据集按记录行数分箱,每箱样本量一致。最简单的一种分箱方法。
(2)等宽分箱法,统一区间,使数据集在整个属性值的区间上平均分布,也就是每个分箱中的取值范围一致。
(3)用户自定义区间,用户可以根据实际情况自定义区间,使用这种方法能帮助当用户明确观察到某些区间范围内的数据分布。
2.回归
发现两个相关的变量之间的变化模式,通过使数据适合一个函数来平滑数据。
若是变量之间存在依赖关系,也就是y=f(x),那么就可以设法求出依赖关系f,再根据x来预测y,这也是回归问题的实质。实际问题中更常为见的假设是p(y)=N(f(x)),N为正态分布。假设y是观测值并且存在噪声数据,根据我们求出的x和y之间的依赖关系,再根据x来更新y的值,这样就能去除其中的随机噪声,这就是回归去噪的原理 。
相信读完上文,你对随机森林算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29