散点图大家都能绘制,平常工作汇报有时也会用散点图让报表看起来更美观。但是,散点图并不是为了展示数据,而是需要数据分析,并利用数据分析的结果推动业务的增长。小编今天跟大家分享的这篇文章就是教大家如何用散点图进行数据分析的,希望对大家有所帮助。
文章来源:林骥微信公众号
作者:林骥
你好,我是林骥。
散点图的用途有很多,我认为它的核心价值,在于应用相关思维,发现变量之间的关系。
散点图就像一扇窗,打开它,并仔细观察,能让我们看见更多有价值的信息。
比如说,假设表格中有 10000 个客户年龄和消费金额的数据:
我们可以计算每一个年龄对应的人均消费金额,比如说,所有 20 岁客户的平均消费金额约为 1383.69 元,然后我们可以画出一张散点图:
从图中可以看出,客户的年龄与人均消费金额有很强的相关性,其中应用了线性回归算法,得到一条拟合的直线,并用公式表示出来, 接近于 1 ,代表算法拟合的效果很好。
接下来,我们看看具体实现的步骤。
首先,导入所需的库,并设置中文字体和定义颜色等。
# 导入所需的库 import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline # 正常显示中文标签 mpl.rcParams['font.sans-serif'] = ['SimHei'] # 自动适应布局 mpl.rcParams.update({'figure.autolayout': True}) # 正常显示负号 mpl.rcParams['axes.unicode_minus'] = False # 禁用科学计数法 pd.set_option('display.float_format', lambda x: '%.2f' % x) # 定义颜色,主色:蓝色,辅助色:灰色,互补色:橙色 c = {'蓝色':'#00589F', '深蓝色':'#003867', '浅蓝色':'#5D9BCF', '灰色':'#999999', '深灰色':'#666666', '浅灰色':'#CCCCCC', '橙色':'#F68F00', '深橙色':'#A05D00', '浅橙色':'#FBC171'}
其次,从 Excel 文件中读取数据,并调用 sklearn 中的算法,得到拟合的直线和评分结果。
# 数据源路径 filepath='./data/客户年龄和消费金额.xlsx' # 读取 Excel文件 df = pd.read_excel(filepath, index_col='客户编号') # 定义画图用的数据:年龄和人均消费金额 df_group = df.groupby('年龄').mean() x = np.array(df_group.index).reshape(-1, 1) y = np.array(df_group.values) # 用管道的方式调用算法,以便把线性回归扩展为多项式回归 poly_reg = Pipeline([ ('ploy', PolynomialFeatures(degree=1)), ('lin_reg', LinearRegression()) ]) # 拟合 poly_reg.fit(x, y) # 斜率 coef = poly_reg.steps[1][1].coef_ # 截距 intercept = poly_reg.steps[1][1].intercept_ # 评分 score = poly_reg.score(x, y)
接下来,开始用「面向对象」的方法进行画图。
# 使用「面向对象」的方法画图,定义图片的大小 fig, ax = plt.subplots(figsize=(8, 6)) # 设置标题 ax.set_title('\n客户每年长一岁,人均消费金额增加' + '%.2f' % coef[0][1] + '元\n', loc='left', size=26, color=c['深灰色']) # 画气泡图 ax.scatter(x, y, color=c['蓝色'], marker='.', s=100, zorder=1) # # 绘制预测线 y2 = poly_reg.predict(x) ax.plot(x, y2, '-', c=c['橙色'], zorder=2) # 隐藏边框 ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) # 隐藏刻度线 ax.tick_params(axis='x', which='major', length=0) ax.tick_params(axis='y', which='major', length=0) ax.set_ylim(15, 65) ax.set_ylim(1000, 5000) # 设置坐标标签字体大小和颜色 ax.tick_params(labelsize=16, colors=c['深灰色']) ax.text(ax.get_xlim()[0]-6, ax.get_ylim()[1], '人\n均\n消\n费\n金\n额', va='top', fontsize=16, color=c['深灰色']) # 设置坐标轴的标题 ax.text(ax.get_xlim()[0]+1, ax.get_ylim()[0]-300, '年龄', ha='left', va='top', fontsize=16, color=c['深灰色']) # 预测 55 岁的人均消费金额 predict = poly_reg.predict([[55]]) # 标注公式 formula = r'$\mathcal{Y} = ' + '%.2f' % coef[0][1] + '\mathcal{X}' + '%+.2f$' % intercept[0] + '\n' + r'$\mathcal{R}^2 = ' + '%.5f$' % score ax.annotate(formula, xy=(55, predict), xytext=(55, predict+500), ha='center', fontsize=12, color=c['深灰色'], arrowprops=dict(arrowstyle='->', color=c['橙色'])) plt.show()
你可以前往 https://github.com/linjiwx/mp 下载数据文件和完整代码。
当业务指标很多的时候,应该挑选什么指标来进行分析,这件事很考验分析者的功力,往往需要对业务有比较深刻的理解。
为什么很多人精通各种工具技术,手上也有很多各种各样的数据,却没有做出让领导满意的图表?
好的图表,就像是给近视的人戴了一副眼镜,让读者以更清楚的方式去理解数据。
好的图表,就像是神奇的催化剂,加快了从数据到决策的过程,让决策者更加快速地掌握有助于做出决策的信息。
好的图表,能把复杂的问题简单化,帮我们更精准地理解业务的现状,甚至预测未来。
我们应该记住,无论多么漂亮的图表,如果不能从中获取有价值的信息,那么也是一张没有「灵魂」的图表。
很多时候,我们面对的问题,并不是没有数据,而是数据太多,却不知道怎么用。
熟悉数据分析的思维,能帮我们找到更重要的数据,排除过多杂乱数据的干扰。
如果把数据分析比作医生看病的过程,那么可以分为以下 4 个阶段:
(1)描述:检查身体,描述指标值是否正常。
(2)诊断:询问病情,找到疾病的产生原因。
(3)预测:分析病情,预测病情的发展趋势。
(4)指导:开出药方,提出有效的治疗建议。
我们要尽可能地理解业务并提供价值,从数据的加工者,转变成故事的讲述者,甚至是问题的解决者。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03