机器学习主要分为:有监督学习,无监督学习,以及半监督学习等。小编今天给大家分享的主要是有监督学习和无监督学习的比较,希望对于大家机器学习有所帮助。
1、有监督学习(supervised learning)是指从给定的训练数据集中学习出一个函数(模型参数),当新的数据到来时,可以根据这个函数预测结果。有监督学习的训练集要求包括输入输出,也可以说是特征和目标。训练集中的目标是由人标注的。
以此可以总结出 有监督学习的特点:
(1)有标签的就是有监督学习。
(2) 已经标记好的数据(labelled data),用来做训练来预测新数据的类型(class),或者是值。预测已有类型叫做分类(classification),预测一个值叫做回归(regression)。
(3) 常见的有监督学习算法:回归分析和统计分类。
常见的有监督学习算法:回归分析和统计分类。最典型的算法是KNN和SVM。
2、无监督学习(或者非监督学习,unsupervised learning)输入数据没有被标记,也没有确定的结果。样本数据类别未知,需要根据样本间的相似性对样本集进行分类(聚类,clustering)试图使类内差距最小化,类间差距最大化。无监督学习是另一种研究的比较多的学习方法,它与监督学习的不同之处,在于我们事先没有任何训练样本,而需要直接对数据进行建模。
无监督学习的方法分为两大类:
(1) 一类为基于概率密度函数估计的直接方法:指设法找到各类别在特征空间的分布参数,再进行分类。
(2) 另一类是称为基于样本间相似性度量的简洁聚类方法:其原理是设法定出不同类别的核心或初始内核,然后依据样本与核心之间的相似性度量将样本聚集成不同的类别。
利用聚类结果,可以提取数据集中隐藏信息,对未来数据进行分类和预测。应用于数据挖掘,模式识别,图像处理等。
PCA和很多deep learning算法都属于无监督学习。
1.有监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律。而无监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。
2.有监督学习的方法就是识别事物,识别的结果表现在给待识别数据加上了标签。因此训练样本集必须由带标签的样本组成。而无监督学习方法只有要分析的数据集的本身,预先没有什么标签。如果发现数据集呈现某种聚集性,则可按自然的聚集性分类,但不予以某种预先分类标签对上号为目的。
3.无监督学习方法在寻找数据集中的规律性,这种规律性并不一定要达到划分数据集的目的,也就是说不一定要“分类”。在这一点上无监督学习比有监督学习方法的用途要广。
4.用无监督学习方法分析数据集的主分量与用K-L变换计算数据集的主分量又有区别。后者从方法上讲不是学习方法。因此用K-L变换找主分量不属于无监督学习方法,即方法上不是。而通过学习逐渐找到规律性这体现了学习方法这一点。在人工神经元网络中寻找主分量的方法属于无监督学习方法。
最简单的方法就是从定义入手,
有训练样本则考虑采用监督学习方法;
无训练样本,则一定不能用监督学习方法。
需要注意的是,实际应用中,即使在没有训练样本的情况下,我们也能够从待分类的数据中,对一些样本进行人工标注,并将它们作为训练样本,这样一来,就能够把条件进行改善,使用有监督学习方法来做。在不同的场景,正负样本的分布如果会存在偏移,这种情况下,有监督学习的效果可能没有无监督学习的效果好。
以上就是小编今天跟大家分享的关于有监督学习和无监督学习的区别。在机器学习中,有监督学习和无监督学习是最常用的两种学习方法了,大家一定要清楚两者之间的区别,以及两者的适用场景。
数据分析咨询请扫描二维码
数据分析是一个涉及从数据收集、清理到分析、可视化和解释的复杂过程。随着数据在各行各业中的重要性不断增加,数据分析工具也变 ...
2024-10-066. 方差分析 单因素多水平方差分析 例6.1 不同装配方式对生产的过滤系统数量的差异性检验 某城市过滤水系统生产公司,有A、B、C3 ...
2024-10-06不过,在出题前,要公布上一期LEVEL II中61-65题的答案,大家一起来看! 62、B 64、B 你答对了吗? 66.关于单因素 ...
2024-10-05嗨喽,各位同学又到了公布CDA数据分析师认证考试LEVEL II的模拟试题时间了,今天给大家带来的是模拟试题(一)中的146-150 ...
2024-10-055. 假设检验 久经考场的你肯定对于很多概念类题目里问到的 “区别和联系” 不陌生,与之类似,在统计领域要研究的是数据之间的区 ...
2024-10-05数据模型(Data Model)是对现实世界数据特征的抽象,用于描述一组数据的概念和定义。它从抽象层次上描述了系统的静态特征、动态 ...
2024-10-044. 区间估计 还以为你被上节课的内容唬住了~终于等到你,还好没放弃! 本节我们将说明两个问题:总体均值 的区间估计和总体比例 ...
2024-10-04大数据分析师在现代企业中扮演着至关重要的角色。他们通过分析大量数据,帮助企业做出明智的决策。要成为一名成功的大数据分析师 ...
2024-10-033. 数据分布 t分布、F分布和卡方分布是统计学中常用的三种概率分布,它们分别用于样本均值的推断、方差的比较和数据的拟合优度检 ...
2024-10-03大数据分析师在现代企业中扮演着至关重要的角色。他们通过分析大量数据,帮助企业做出明智的决策。要成为一名成功的大数据分析师 ...
2024-10-022. 描述性统计 上一篇介绍了数据的分类、统计学是什么、以及统计学知识的大分类,本篇我们重点学习描述性统计学。 我们描述一组 ...
2024-10-02大数据专业的毕业生可以选择多种就业方向和岗位,主要集中在数据分析、系统研发和应用开发三大领域。以下是一些具体的岗位: 大 ...
2024-10-011.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2024-10-01大数据的全球市场规模在 2023 年估计为 1850 亿美元,预计到 2030 年将达到 3834 亿美元,2023 年至 2030 年的复合年增长率为 11 ...
2024-09-30大数据分析是指收集、分析和处理大量数据以发现市场趋势、洞察力和模式,帮助公司做出更好的商业决策的过程。这些信息可以快速、 ...
2024-09-30大数据分析是当今世界一些最重要行业进步背后的推动力,包括医疗、政府和金融等领域。了解更多关于如何处理大数据以及开始时使用 ...
2024-09-30大数据已经成为日常生活不可或缺的一部分,影响着我们的活动。对大量数据的分析已经成为一个重要的行业,对大数据分析师的需求也 ...
2024-09-30数据分析师证书报名官网指南 数据分析师在现代企业中扮演着越来越重要的角色,掌握数据分析技能不仅能够提升个人职场竞争力,也 ...
2024-09-29大数据分析师培训学什么 课程简介 大数据分析师课程以大数据分析技术为主线,以大数据分析师为培养目标,从数据分析基础、linux ...
2024-09-29随着大数据在各行各业中的应用日益广泛,数据分析师这一职业变得越来越重要。作为一名数据分析师,不仅需要具备扎实的技术能力, ...
2024-09-29