京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前面小编给大家简单介绍过损失函数,今天给大家继续分享交叉熵损失函数,直接来看干货吧。
一、交叉熵损失函数概念
交叉熵损失函数CrossEntropy Loss,是分类问题中经常使用的一种损失函数。公式为:
接下来了解一下交叉熵:交叉熵Cross Entropy,是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息。在信息论中,交叉熵是表示两个概率分布p,q,其中p表示真实分布,q表示非真实分布,在相同的一组事件中,其中,用非真实分布q来表示某个事件发生所需要的平均比特数。
交叉熵的计算方式如下:
交叉熵可在机器学习中作为损失函数,p代表真实标记的分布,q则代表训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。交叉熵作为损失函数还有一个好处是:使用sigmoid函数在梯度下降时,可以避免均方误差损失函数学习速率下降的问题,这是因为学习速率是能够被输出的误差所控制的。
二、交叉熵损失函原理
一般我们学习交叉熵损失函数是在二元分类情况下,就比如逻辑回归「Logistic Regression」、神经网络「Neural Network」等,其真实样本的标签为 [0.1],分别表示负类和正类。模型的最后通常会经过一个 Sigmoid 函数,输出一个概率值,这个概率值反映了预测为正类的可能性:概率越大,可能性越大。
其中s是模型上一层的输出,sigmoid函数有这样的特点:s = 0 时,g(s) = 0.5; s >> 0 时,g ≈ 1.s << 0 时,g ≈ 0.显然,g(s) 将前一级的线性输出映射到[0. 1]之间的数值概率上,这里g(s)就是交叉熵公式中的模型预测输出。
预测输出也就是, Sigmoid 函数的输出,表示当前样本标签为 1 的概率:
y^=P(y=1|x)
那么,当前样本标签为 0 的概率就可以表示为:
1−y^=P(y=0|x)
从极大似然性的角度考虑,将上面两种情况进行整合:
也就是:
当真实样本标签 y = 0 时,上面式子第一项就为 1.概率等式转化为:
P(y=0|x)=1−y^
当真实样本标签 y = 1 时,上面式子第二项就为 1.概率等式转化为:
P(y=1|x)=y^
这两种情况下的概率表达式跟原来的完全相同,只是将两种情况进行了整合。
接下来我们重点看一下整合之后的概率表达式,概率 P(y|x) 越大越好。因为 log 运算并不会影响函数本身的单调性,所以 将log 函数引入P(y|x)。于是就有:
log P(y|x)=log(y^y⋅(1−y^)1−y)=ylog y^+(1−y)log(1−y^)
log P(y|x) 越大越好,反过来说也就是,只需要 log P(y|x) 的负值 -log P(y|x) 越小就可以了。引入损失函数,而且使得 Loss = -log P(y|x)即可。那么就能得到损失函数为:
如果是计算N个样本的总损失函数的情况,则只需要将N个Loss叠加起来
三、交叉熵损失函数的优缺点分析
1.使用逻辑函数得到概率,并结合交叉熵当损失函数时,当模型效果差的时,学习速度较快,模型效果好时,学习速度会变慢。
2.采用了类间竞争机制,比较擅长于学习类间的信息,但是只关心对于正确标签预测概率的准确性,而忽略了其他非正确标签的差异,从而导致学习到的特征比较散。
以上就是小编今天跟大家分享的关于交叉熵损失函数概念和原理的相关介绍,希望对于大家有所帮助。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23