在机器学习中,有成千上万甚至几十万的维度的数据需要处理,这种情况下机器学习的资源消耗是不可接受的,并且很大程度上影响着算法的复杂度,因此对数据降维是必要的。PCA(Principal Component Analysis)是一种常用的数据分析方法,也是最基础的无监督降维算法。通常用于高维数据集的探索与可视化,还可以用于数据压缩,数据预处理等。PCA通过线性变换将原始数据变换为一组各维度线性无关表示,可用于提取数据的主要特征分量及高维数据的降维,而转换后的这组变量便是我们所说的主成分。
均值和零均值化
均值
零均值化
然后将每个维度的数据进行零均值化,所谓零均值化就是让均值为0.即每个数据都减去均值。
进行去均值的原因是如果不去均值的话会容易拟合。在神经网络中,如果特征值x比较大的时候,会导致W*x+b的结果也会很大,这样进行激活函数(如relu)输出时,会导致对应位置数值变化量相对来说太小,进行反向传播时因为要使用这里的梯度进行计算,所以会导致梯度消散问题,导致参数改变量很小,也就会易于拟合,效果不好。
定义
若A为n阶矩阵,若数λ和n维非0列向量X满足AX=λX,那么数λ称为A的特征值,X称为A的对应于特征值λ的特征向量
在PCA降维过程中,本质就是把原有数据投影到新的一个空间,我们也就可以看做是在原有数据基础上求解特征向量和特征值
性质
2.对于同一个特征值对应的特征向量的非零线性组合仍是该特征值对应的特征向量
3.矩阵的特征向量总是相对于矩阵的特征值而言,一个特征值具有特征向量不唯一,一个特征向量不能对应不同特征值
从特征向量和特征值的性质我们就可以发现正好符合PCA降维过程中取方差较大和线性不相关的前k维数据作为降维后数据的目的
方差
方差是是用来表示数据的离散程度的,方差越大,离散程度越大,也就是数据波动就越大。
方差的计算:前面已经说了,需要先对每个维度的数据做零均值化,那么方差就是去均值后的平方和的均值
PCA中方差的意义:PCA的本质就是找一些投影方向,使得数据在这些投影方向上的方差最大,而且这些投影方向是相互正交的(即:相关性几乎为0)。这其实就是找新的正交基的过程,计算原始数据在这些正交基上投影的方差,方差越大,就说明在对应正交基上包含了更多的信息量,对数据特征影响更大,我们暂且把这些信息量可以记为特征值。原始数据协方差矩阵的特征值越大,对应的方差越大,在对应的特征向量上投影的信息量就越大。反之,如果特征值较小,则说明数据在这些特征向量上投影的信息量很小,可以将小特征值对应方向的数据删除,从而达到了降维的目的。
协方差
协方差可以计算不同变量之间的相关性:
如果cov(x,y)=-1.变量之间完全负相关
如果cov(x,y)=1.变量之间完全正相关
如果cov(x,y)=0.变量之间完全不相关
而当x和y相等时,协方差的值就等于方差,所以也可以看作方差是协方差的一种特殊情况
在PCA的过程中我们是对原始数据做过零均值化处理的,故,协方差可以变为:
那么每个维度之间的相关性计算方式为:
协方差矩阵
协方差只能表示两个维度变量之间的相互关系,如果有多个维度随机变量,就需要使用协方差矩阵,我们假设现在又三个维度随机变量x,y,z,那么对应的协方差矩阵则为:
矩阵对角化定义
对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值
如果存在一个可逆矩阵 P 使得 P-1AP 是对角矩阵,则矩阵A就被称为可对角化矩阵
如果一个矩阵与一个对角矩阵相似,我们就称这个矩阵可经相似变换对角化,简称可对角化;与之对应的线性变换就称为可对角化的线性变换
协方差矩阵对角化
上文我们已经说明了协方差矩阵是一个实对称矩阵,由实对称矩阵和相似矩阵性质我们可以得出协方差矩阵C具有的性质:
和C相似的对角矩阵,其对角元素为各特征向量对应的特征值(可能有重复)即:C的特征值就是相似对角矩阵的对角元素
我们假设C的相似对角矩阵为A,那么如果存在一个矩阵P使得P-1CP=A,根据对角矩阵的特点,我们就可以发现矩阵P的每一行就是我们所要找的协方差矩阵的特征向量,而特征值就是对角矩阵的对角元素,现在我们离整个PCA过程还有一步,先把每一个特征向量变成单位向量,然后再按照特征值的大小进行排序,取前K行特征值对应的单位向量组成的矩阵和标准化后数据相乘,就得到了我们需要的降维后的数据矩阵。
数据分析咨询请扫描二维码
数据分析是一个涉及从数据收集、清理到分析、可视化和解释的复杂过程。随着数据在各行各业中的重要性不断增加,数据分析工具也变 ...
2024-10-066. 方差分析 单因素多水平方差分析 例6.1 不同装配方式对生产的过滤系统数量的差异性检验 某城市过滤水系统生产公司,有A、B、C3 ...
2024-10-06不过,在出题前,要公布上一期LEVEL II中61-65题的答案,大家一起来看! 62、B 64、B 你答对了吗? 66.关于单因素 ...
2024-10-05嗨喽,各位同学又到了公布CDA数据分析师认证考试LEVEL II的模拟试题时间了,今天给大家带来的是模拟试题(一)中的146-150 ...
2024-10-055. 假设检验 久经考场的你肯定对于很多概念类题目里问到的 “区别和联系” 不陌生,与之类似,在统计领域要研究的是数据之间的区 ...
2024-10-05数据模型(Data Model)是对现实世界数据特征的抽象,用于描述一组数据的概念和定义。它从抽象层次上描述了系统的静态特征、动态 ...
2024-10-044. 区间估计 还以为你被上节课的内容唬住了~终于等到你,还好没放弃! 本节我们将说明两个问题:总体均值 的区间估计和总体比例 ...
2024-10-04大数据分析师在现代企业中扮演着至关重要的角色。他们通过分析大量数据,帮助企业做出明智的决策。要成为一名成功的大数据分析师 ...
2024-10-033. 数据分布 t分布、F分布和卡方分布是统计学中常用的三种概率分布,它们分别用于样本均值的推断、方差的比较和数据的拟合优度检 ...
2024-10-03大数据分析师在现代企业中扮演着至关重要的角色。他们通过分析大量数据,帮助企业做出明智的决策。要成为一名成功的大数据分析师 ...
2024-10-022. 描述性统计 上一篇介绍了数据的分类、统计学是什么、以及统计学知识的大分类,本篇我们重点学习描述性统计学。 我们描述一组 ...
2024-10-02大数据专业的毕业生可以选择多种就业方向和岗位,主要集中在数据分析、系统研发和应用开发三大领域。以下是一些具体的岗位: 大 ...
2024-10-011.统计学简介 听说你已经被统计学劝退,被Python唬住……先别着急划走,看完这篇再说! 先说结论,大多数情况下的学不会都不是知 ...
2024-10-01大数据的全球市场规模在 2023 年估计为 1850 亿美元,预计到 2030 年将达到 3834 亿美元,2023 年至 2030 年的复合年增长率为 11 ...
2024-09-30大数据分析是指收集、分析和处理大量数据以发现市场趋势、洞察力和模式,帮助公司做出更好的商业决策的过程。这些信息可以快速、 ...
2024-09-30大数据分析是当今世界一些最重要行业进步背后的推动力,包括医疗、政府和金融等领域。了解更多关于如何处理大数据以及开始时使用 ...
2024-09-30大数据已经成为日常生活不可或缺的一部分,影响着我们的活动。对大量数据的分析已经成为一个重要的行业,对大数据分析师的需求也 ...
2024-09-30数据分析师证书报名官网指南 数据分析师在现代企业中扮演着越来越重要的角色,掌握数据分析技能不仅能够提升个人职场竞争力,也 ...
2024-09-29大数据分析师培训学什么 课程简介 大数据分析师课程以大数据分析技术为主线,以大数据分析师为培养目标,从数据分析基础、linux ...
2024-09-29随着大数据在各行各业中的应用日益广泛,数据分析师这一职业变得越来越重要。作为一名数据分析师,不仅需要具备扎实的技术能力, ...
2024-09-29