京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着大数据时代的到来,企业管理者对数据价值的重视度越来越高,他们渴望从企业内外部数据中获得更多的信息财富,并以此为依据,帮助自己做出正确的战略决策,数据分析技能被应用在诸如互联网、金融、电商、市场、运营等各行各业。因此,掌握数据分析相关技能已经成为大数据时代的重要加薪砝码。
具体来说,你需要掌握以下的知识技能来提升大数据时代的职业竞争力。
1.统计学思想和方法
如果拥有出色的工具使用技能,但是不会解读数据,那又有什么用呢?对数据分析来说,了解统计学知识很关键,包含描述性统计学和推断性统计学。统计学更多地是提供解决问题的思路,在你未来的工作中会显得越来越重要。
2.SQL数据库查询语言
不光是数据分析,当下大部分的岗位中,诸如产品经理、市场运营等岗位。SQL都被列为一项重要的技能。你需要知道如何从关系型数据库(诸如Mysql,Oracle,Sql Server)中提取出你自己需要的数据。
俗话说,工欲善其事必先利其器。这个依据你的行业和兴趣而定。如银行、医药行业多用SAS,市场咨询、电信等行业偏爱SPSS。如果你对编程感兴趣,那么它是让数据分析师超越业务分析师之上的核心技能,你需要熟练掌握一到多门编程语言,从 Python 或 R 开始。
如果你是数据分析师或者对数据分析感兴趣,你不需要发明新的机器学习算法,但是你应该了解这些领域的常见概念。一些示例包括主成分分析、神经网络、支持向量机和 K 均值聚类。你需要掌握监督式学习和非监督式学习的方法。
5.大数据分析能力
如果你的企业面临的数据量级足够大,而且你对大数据分析感兴趣,那么你需要了解大数据存储和分析的工具,诸如hadoop,Spark等技术。
6.数据可视化能力
如果你无法清晰有效地传达你的想法,那么你的数据分析繁琐工作不会受到任何认可。熟悉诸如 Power BI、Tableau、GGplot、Matplotlib、Seaborn 等任何一款数据可视化工具将会有帮助。要取得成功,你还需要完全了解业务背景,以便知道如何调整你的数据可视化结果,使其具有最高的关联性。
数据分析是一个快速发展的学科,以上的也可能会有所偏驳。如果你对任一技能感兴趣并潜心学习,都足够成为大数据时代的加薪砝码,成为企业的抢手人才。当然,除了技术能力以外,你还需要掌握数据之外的必备能力。
1.抽象思维能力:数据分析师的任务不该止步于技术开发,他们更大的价值是培养抽象思维能力。具体来说是将一个虚无缥缈的概念剖开,成为数据可以解答的问题⸺建立框架和分析角度,分解分解大而全的问题,用数据分析给出小而美的答案,进一步将其变成产品建议,进而为高层提供决策依据;
2. 沟通技能:数据分析师在数据获取、分析、洞察及实施各个阶段都需要业务团队及高层的配合,因而,数据团队对成员的沟通技能有较高要求:在合作初期,数据团队需要具备发现业务团队需求的沟通力;合作中,尽快让业务团队建立起对数据团队的信任感并克服其抵触感;拿到分析结果后,数据团队应总结洞察并提出业务建议,精准且有效率地与决策者沟通,辅助其决策;最终,数据团队应配合业务和高层将相关分析结果实施落地;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09