京公网安备 11010802034615号
经营许可证编号:京B2-20210330
入门R语言数据分析的正确姿势
如果你对R语言感兴趣,而不知道是否应该选择R作为你数据分析的第一选择,那么CDA数据分析师下面的系列课程可以作为你的参考:
1.入门《R语言语法基础》
https://www.cda.cn/gkk/21.html
内容介绍:R语言使用、R数据类型、R中的向量、R中的对象与属性、R的矩阵、因子、数据框、列表
https://www.cda.cn/gkk/1.html
内容介绍:R语言入门与介绍、统计推断与参数估计、方差分析、回归分析、残差分析、分类变量分析
3.进阶《汽车金融信用违约预测模型与R语言实现》
https://www.cda.cn/gkk/19.html
内容介绍:有基础学员学习,针对汽车行业风控案例,讲解数据挖掘全流程,包含业务理解-数据理解-数据准备-建模分析-模型评估-模型检测。涉及到的知识点有统计推断、KNN最近领域法、数据标准化、决策树算法、变量筛选、连续变量分箱、WEO转换、评分卡建置等。
如果你还不知道该先学习哪种编程语言。
那么我给你的建议就是:
先专注学习R语言
一、专注于一种语言
在说明为什么你应该学习R语言之前,我想强调的是,在开始学习数据科学时,你应该学习一种语言。
有些人问我是否应该学习在学R语言的同时学习Python。我的答案基本上是否定的,除非你需要使用一种以上的语言,否则你应该选择一种语言进行学习。
专注于一种编程语言的原因是,你需要更多地关注过程和技术,而不是语法。你需要掌握如何通过数据科学工具来分析数据,以及如何解决问题。事实证明,R语言是最佳的选择。
二、最常用的编程语言之一
我建议你将R语言作为你的第一个“数据科学编程语言”。虽然也有例外,比如特定的项目需要。
因为R语言正在成为数据科学的“通用语言”这并不是说R语言是唯一的语言,也不是说它是每个工作的最佳工具。然而,它是使用最广泛的,而且越来越受欢迎。
O' reilly media在过去几年中进行了一系列数据科学调查,分析了数据科学趋势。在2016年的调查报告中,R语言是最常用的编程语言(如果排除SQL的话,在本文中它不能称为编程语言)。57%的调查人群使用R语言(使用Python的比例为54%)。
另一个常见的语言排名系统是Redmonk编程语言排名,它由GitHub(代码行)和Stack Overflow(标签数)的流行指数派生而来。截至2016年11月,R语言在所有编程语言中排名第13。此外,R语言多年来一直呈持续上升趋势:
此外还有TIOBE指数(按搜索引擎搜索次数对编程语言进行排名)。在TIOBE指数上,R语言十年来呈现出稳定上升趋势。
三、使用R语言的公司
在招聘数据科学家的几家顶级公司中,R语言使用程度非常高。在我认为现代经济中最优秀的两家公司——Google和Facebook 都有使用R语言数据科学家。
除了像Google,Facebook和微软这样的科技巨头,R语言在美国银行,福特,TechCrunch,Uber和Trulia等众多公司都有广泛的应用。
四、R语言在学术界和商界都很受欢迎
R语言不仅仅是一个行业工具。它在学术科学家和研究人员中也非常受欢迎,最近著名《自然》杂志上发表的R语言概况也证实了这一点。
R语言在学术界的备受欢迎,因为它创造了供应行业的人才库。
换句话说,如果最优秀、最聪明的人群在大学学习了R语言,这将加大R语言在行业中的重要性。当学者、博士和研究人员离开学术界从事商业活动时,他们又将产生对R语言人才的需求。
此外,随着数据科学的成熟,商业届的数据科学家将需要与学术届的科学家进行更多的沟通。我们需要借鉴技术和交流观点。随着世界转变为数据流时,学术科学与面向商业的数据科学之间的界线会变得模糊。
五、一点小建议
如果你是初学者,R语言是很好的选择。同时需要专注于学习数据科学的技能。
在学习过程中,你可能会看到很多新技术和新工具,或者一些令人眼花缭乱的数据可视化。
看到其他人的成果(并发现他们正在使用不同的工具)可能会导致你想尝试其他的东西。相信我:你需要集中注意力。你需要花上几个月(或更长时间)才能真正投入到一个工具中。
如上所述,如果你确实希望在数据科学工作流程中提高技能。至少在数据可视化和数据处理方面,你得具备扎实的技能。
在R语言上花费100个小时,将比在10个不同工具上各花费10个小时得到更高的回报。最后,通过集中精力,你的时间回报率将更高。不要因为“最新,最炫的事物”而分心。
R语言最近开课:
(CDA LEVEL I R 数据分析)
一、课程信息
北京 & 远程:2017年11月04日~11月26日(四周线下&直播) + 两周线上
授课安排:现场班6900元,远程班4900元
(1) 授课方式:面授直播两种形式,中文多媒体互动式授课方式
(2)授课时间:上午9:00-12:00,下午13:30-16:30,16:30-17:00(答疑)
(3)学习期限:现场与视频结合,长期学习加练习答疑。
二、报名流程
1. 在线填写报名信息
官网端:
微信端:
2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
三、课程大纲
第一阶段:数据分析概念与R编程
第二阶段:数理统计与SQL数据库
第三阶段:数理统计与数据可视化
第四阶段:统计推断与精益管理
第五阶段:市场分析方法与模式识别模型
第六阶段:客户分析方法与分类模型
第七阶段:时间序列与综合案例
第八阶段:综合案例分析
第九阶段:[线上选修]Mysql数据库基础知识(一周)
第十阶段:[线上选修]Tableau数据可视化(一周)
如果你有R语言统计分析和业务分析的基础,对R数据挖掘和模型的知识有兴趣,也欢迎报名参加R数据挖掘的课程:
https://www.cda.cn/kecheng/31.html
1级2级连报更有8折优惠!
四、课程讲师
杨柳
CDA数据分析研究院讲师/经济学博士
2014年8月毕业于美国纽约州立大学,现任教于南京大学商学院产业经济学系。研究方向为计量经济理论和经济预测。长期从事R语言开发及其在计量经济学中的应用研究,积累了丰富的编程经验。主持并参与多项金融和宏观经济的课题项目,对如何应用R语言进行数据分析和挖掘有深刻的认识和独到的见解。
瞿辉
美库尔公司分析经理/中国科学技术大学统计学硕士毕业
多年数据分析和挖掘的工作经历,精通SAS和R,对各种机器学习算法和统计模型都有深入研究,负责过保险、医药、零售以及电商等多个行业的数据分析项目,在客户画像、用户分群、精确营销、销售预测、营销组合优化等领域有丰富经验。
五、课程优惠
1. 全日制在读学生8折优惠(需提供学生证件证明);
2. 参加过论坛其他现场班老学员9折优惠;
3. 三人及以上9折优惠,五人及以上8折优惠;
4. 同时报名参加LEVELⅠ和LEVEL Ⅱ享受8折优惠。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28