京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析这个技能,到底能不能速成
没有任何牛逼的事情是能够速成的,越是像数据分析这种收益周期长的技能,掌握起来越是这样。
但这并不代表,我们不能以一些更有效的方式,把学习的过程变得高效而有趣。
学习一门技术之前,你应该知道,你想要达成的目标是什么样的,也就是说,你想通过这门技术来解决哪些问题,应用在哪些行业,哪些业务场景下。只有这一点想通了,你的数据分析之路的学习才是高效的、有目的的、有意义的。
CDA数据分析师自2013年成立以来,培养了上万名学员跻身数据分析师行列,我们通过对部分学员的需求表进行文本分析,让我们来看看学习数据分析的学员都想学什么?
一、 学习目标分析&学习结果
从关键词和文本摘要提取可以得到学员学习目标主要为:
A. 掌握数据分析&数据挖掘理论、方法和实践;熟练掌握统计分析软件如
SPSS,SAS,SPSS,R 等;—成为优秀的数据分析师;提升职业竞争力;
B. 应用数据分析于学术、商业领域的实践,解决实际问题;
C. 就业考证,升职加薪;
D. 掌握数据分析实战能力,实现转行。
二、学员行业及公司背景
通过上述 word2vec 图和词云图,可以看出CDA 的学员来自于各行各业,数据分析是一个具有广泛应用和发展前景的行业,有的来自于工业,如化工、航天、能源、制造业;有的来自于财经行业,如证券、新闻、新华网、人民日报;有的来自于娱乐及服务行业。
三、应用领域分析&业务具体问题分析
通过关键词词云和摘要提取可以发现大部分学员比较有目标性,学习的需求全部来自于工作中实际的业务需求。业务主题如:银行信用贷款、客服管理分析、用户行为分析、用户习惯分析、客户关系管理理等。
有了这些目标,下面你需要知道要达成这样的目标,它的知识体系是怎么样的。只有明确的目标导向,配合以最体系化的学习内容,学习最有用的那部分知识,才能避免无效信息降低学习效率,找到成为企业雇主喜爱的数据分析师的最快路径。
根据数据挖掘标准流程CRISP-DM,数据挖掘流程是一个多部门协同产生价值的过程。从业务部门的资讯需求到内外部的数据整合与获取,建置数据仓库,数据挖掘,报表呈现。最终形成可实施的报告或者与工程师合作产生数据产品。
因此,我建议你的学习路径如下(以非编程类分析软件为例):
数据分析是一个快速发展的领域,无论你是刚刚起步还是想拓展现有技能,数据分析师要投入的精力都很多,但是我们保证,回报却更高。
如果你是一个自制力很强而且自身学习极有规划性,那么通过上述的大纲和网上资料教材等自学,你可以很快跻身数据分析师这样一个富有魅力和挑战性的行业。
如果你自身的自制力很弱,面临自学知识难以系统升华?自学过程无人指导?遇到瓶颈无法突破?那么,我们为你设计了一套完整学习方案。
CDA数据分析研究院结合市场和学员需求,首推【CDA数据分析师-周末集训班】课程。职场数据分析师完整学习解决方案,三个月周末学习,顶尖师资带领每周案例实战,毕业分组项目竞技。名额有限,欢迎报名参加!
一、课程信息
北京&远程:2017年12月16日~3月18日(3个月周末)
课程费用:现场班9900元,远程班7900元
授课形式:现场(远程)与视频结合,长期学习加练习答疑。
二、 报名流程
1.在线填写报名信息
2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
三、 课程安排
第一阶段:[线下]Mysql数据库管理
第二阶段:[线上]数据分析之数理统计知识P1
第三阶段:[线上]数据分析之数理统计知识P2
第四阶段:[线下]SPSS数据分析P1
第五阶段:[线下]SPSS数据分析P2
第六阶段:[线下]SPSS案例分析
第七阶段:[线上]Tableau数据可视化
第八阶段:[线上]期中项目作业
第九阶段:[线下]SPSS Modeler数据挖掘P1
第十阶段:[线下]SPSS Modeler数据挖掘P2
第十一阶段:[线下]期末毕业答辩
(详细大纲参照原文链接)
四、课程优惠
4.以上优惠不叠加
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01