京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析这个技能,到底能不能速成
没有任何牛逼的事情是能够速成的,越是像数据分析这种收益周期长的技能,掌握起来越是这样。
但这并不代表,我们不能以一些更有效的方式,把学习的过程变得高效而有趣。
学习一门技术之前,你应该知道,你想要达成的目标是什么样的,也就是说,你想通过这门技术来解决哪些问题,应用在哪些行业,哪些业务场景下。只有这一点想通了,你的数据分析之路的学习才是高效的、有目的的、有意义的。
CDA数据分析师自2013年成立以来,培养了上万名学员跻身数据分析师行列,我们通过对部分学员的需求表进行文本分析,让我们来看看学习数据分析的学员都想学什么?
一、 学习目标分析&学习结果
从关键词和文本摘要提取可以得到学员学习目标主要为:
A. 掌握数据分析&数据挖掘理论、方法和实践;熟练掌握统计分析软件如
SPSS,SAS,SPSS,R 等;—成为优秀的数据分析师;提升职业竞争力;
B. 应用数据分析于学术、商业领域的实践,解决实际问题;
C. 就业考证,升职加薪;
D. 掌握数据分析实战能力,实现转行。
二、学员行业及公司背景
通过上述 word2vec 图和词云图,可以看出CDA 的学员来自于各行各业,数据分析是一个具有广泛应用和发展前景的行业,有的来自于工业,如化工、航天、能源、制造业;有的来自于财经行业,如证券、新闻、新华网、人民日报;有的来自于娱乐及服务行业。
三、应用领域分析&业务具体问题分析
通过关键词词云和摘要提取可以发现大部分学员比较有目标性,学习的需求全部来自于工作中实际的业务需求。业务主题如:银行信用贷款、客服管理分析、用户行为分析、用户习惯分析、客户关系管理理等。
有了这些目标,下面你需要知道要达成这样的目标,它的知识体系是怎么样的。只有明确的目标导向,配合以最体系化的学习内容,学习最有用的那部分知识,才能避免无效信息降低学习效率,找到成为企业雇主喜爱的数据分析师的最快路径。
根据数据挖掘标准流程CRISP-DM,数据挖掘流程是一个多部门协同产生价值的过程。从业务部门的资讯需求到内外部的数据整合与获取,建置数据仓库,数据挖掘,报表呈现。最终形成可实施的报告或者与工程师合作产生数据产品。
因此,我建议你的学习路径如下(以非编程类分析软件为例):
数据分析是一个快速发展的领域,无论你是刚刚起步还是想拓展现有技能,数据分析师要投入的精力都很多,但是我们保证,回报却更高。
如果你是一个自制力很强而且自身学习极有规划性,那么通过上述的大纲和网上资料教材等自学,你可以很快跻身数据分析师这样一个富有魅力和挑战性的行业。
如果你自身的自制力很弱,面临自学知识难以系统升华?自学过程无人指导?遇到瓶颈无法突破?那么,我们为你设计了一套完整学习方案。
CDA数据分析研究院结合市场和学员需求,首推【CDA数据分析师-周末集训班】课程。职场数据分析师完整学习解决方案,三个月周末学习,顶尖师资带领每周案例实战,毕业分组项目竞技。名额有限,欢迎报名参加!
一、课程信息
北京&远程:2017年12月16日~3月18日(3个月周末)
课程费用:现场班9900元,远程班7900元
授课形式:现场(远程)与视频结合,长期学习加练习答疑。
二、 报名流程
1.在线填写报名信息
2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
三、 课程安排
第一阶段:[线下]Mysql数据库管理
第二阶段:[线上]数据分析之数理统计知识P1
第三阶段:[线上]数据分析之数理统计知识P2
第四阶段:[线下]SPSS数据分析P1
第五阶段:[线下]SPSS数据分析P2
第六阶段:[线下]SPSS案例分析
第七阶段:[线上]Tableau数据可视化
第八阶段:[线上]期中项目作业
第九阶段:[线下]SPSS Modeler数据挖掘P1
第十阶段:[线下]SPSS Modeler数据挖掘P2
第十一阶段:[线下]期末毕业答辩
(详细大纲参照原文链接)
四、课程优惠
4.以上优惠不叠加
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22