京公网安备 11010802034615号
经营许可证编号:京B2-20210330
随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应运而生,旨在通过科学的分级考试和全面的能力模型,培养具备描述现状、分析原因、预测行为能力的复合型数据人才。该体系不仅覆盖传统的数据分析师和数据挖掘工程师,还面向经营决策者和业务骨干,满足企业数智化转型对数据人才的多样化需求。

CDA认证考试体系围绕一套全面的数据人才能力模型展开,旨在培养能够胜任企业数据分析任务的专业人才。

企业中的数据分析任务主要分为三大类:现状描述、归因分析和预测分析。每一类任务都包含多个核心模块:
为高效完成这些任务,数据分析人才需要具备以下核心能力:
自助取数能力
数据人才需要熟悉业务逻辑,能够阅读数据模型和字典,并熟练掌握SQL常用语法,从而准确获取所需数据。这是进行数据分析的基础,只有获取到准确的数据,后续的分析工作才有意义。
自助BI产品能力
搭建指标体系、制作自助报表和BI看板,能将数据以直观、易懂的方式呈现出来,帮助企业各层级人员更好地理解业务状况,为决策提供有力支持。
分析预测能力
包括定性归因、指标归因和模型归因等分析方法,以及业绩预报、流失可能预测、欺诈行为识别等预测能力,帮助企业深入剖析业务问题,预测未来趋势,提前制定应对策略。
通过培养这些核心能力,CDA认证考试体系为数据人才提供了全面的能力框架,助力他们在企业中高效完成数据分析任务,推动业务决策的科学化和精准化。
根据数据分析的深度和技术难度,从宏观业务分析到微观个体预测,精心设计了四个阶段的学习内容。

每个级别针对不同的能力需求和职业场景,帮助学员逐步提升数据分析能力,实现从基础到高级的进阶。
第一阶段:基于定性归因的策略制定
策略制定主要依赖定性归因模式。数据分析师通过调研访谈、业务经验积累和定性分析,识别业务问题的根源,并制定初步的策略,这个阶段属于CDA一级前期。这一阶段的重点在于理解业务逻辑和构建基础的分析框架,工具使用以Excel和BI工具为主,辅以SQL进行数据提取。定性策略的制定虽然依赖经验,但为后续的定量分析奠定了基础。
第二阶段:基于指标归因的策略制定
策略制定模式升级为基于指标归因的定量分析。数据分析师在调研访谈的基础上,利用SQL提取数据,并通过电子表格和BI工具进行多维透视和指标拆解,深入分析业务问题的根源,这个阶段属于CDA一级后期。这一阶段的策略制定更加数据驱动,能够通过量化分析精准定位问题,并制定更具针对性的策略。工具使用上,除了SQL和BI工具,Python编程开始引入,用于更复杂的数据处理和分析。
第三阶段:基于模型归因的策略制定
策略制定模式进一步升级为基于模型归因的定量分析。数据分析师不仅需要调研访谈和提取数据,还要运用Python结合统计模型(如回归模型、分类模型)进行深度分析,这个阶段属于CDA二级。这一阶段的策略制定更加科学和系统,能够通过模型预测业务趋势,并为决策提供量化支持。工具使用上,Python成为核心工具,用于数据处理、模型构建和结果可视化。
第四阶段:基于算法的智能策略制定
策略制定模式进入基于算法的智能策略阶段。数据分析师借助Python和机器学习算法(如聚类算法、深度学习模型),从海量数据中挖掘隐藏规律,并自动生成智能策略,这个阶段属于CDA三级。这一阶段的策略制定不仅高效精准,还具有前瞻性和创新性,能够为企业提供深层次的数据洞察和决策支持。工具使用上,Python和机器学习框架(如TensorFlow、PyTorch)成为核心工具,用于复杂算法的实现和优化。
对个人的职业发展助力
CDA认证为数据人才提供了清晰的职业成长路径。从一级的基础数据分析能力培养,到二级的业务与技术融合提升,再到三级的专业数据挖掘技能精通,逐步提升数据人才的专业素养和市场竞争力。持有CDA认证的人员,在就业市场上更具优势,能够获得更多的职业机会和更高的薪资待遇,也有助于个人在数据领域不断深耕,实现职业目标。
对企业的数字化转型支持
企业在数字化转型过程中,需要大量具备专业数据分析能力的数据人才。CDA认证培养的数据人才能够满足企业在业务现状描述、问题归因分析和个体行为预测等方面的需求,帮助企业深入挖掘数据价值,洞察市场变化和趋势,降低风险,提高决策效率,进而提升企业的核心竞争力,推动企业数字化转型的顺利进行。
CDA认证考试体系作为数据领域的专业认证体系,通过科学的能力模型和分级设置,为数据人才培养提供了标准化路径。这不仅有助于提升数据人才的整体素质,也为行业建立了统一的评价标准。
无论是初入职场的新人,还是寻求职业突破的资深从业者,CDA认证都为他们提供了明确的成长方向和发展路径,助力他们在数据领域实现自身价值,推动企业的持续发展。在数据驱动的时代中,CDA认证考试体系发挥着不可或缺的作用,成为数据人才成长的坚实阶梯。
学习入口:https://edu.cda.cn/goods/show/978?targetId=3283&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27