京公网安备 11010802034615号
经营许可证编号:京B2-20210330
考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额外的未标记数据,更好地捕捉数据分布的潜在形状,并在新样本上的泛化能力更强。当我们只有非常少量的已标记数据,同时有大量未标记数据点时,这种算法可以表现得非常出色。
在sklearn中,基于图算法的半监督学习有Label Propagation和Label Spreading两种。他们的主要区别是第二种方法带有正则化机制。
Label Propagation算法基于图理论。算法首先构建一个图,其中每个节点代表一个数据点,无论是标记的还是未标记的。节点之间的边代表数据点之间的相似性。算法的目的是通过图传播标签信息,使未标记数据获得标签。
相似性度量:通常使用K近邻(KNN)或者基于核的方法来定义数据点之间的相似性。
标签传播:标签信息从标记数据点传播到未标记数据点,通过迭代过程实现。
适用场景:适合于数据量较大、标记数据稀缺的情况。
Label Spreading和Label Propagation非常相似,但在处理标签信息和正则化方面有所不同。它同样基于构建图来传播标签。
正则化机制:Label Spreading引入了正则化参数,可以控制标签传播的过程,使算法更加健壮。
稳定性:由于正则化的存在,Label Spreading在面对噪声数据时通常比Label Propagation更稳定。
适用场景:同样适用于有大量未标记数据的情况,尤其当数据包含噪声时。
本文首先介绍Label Propagation,带有正则的Label Spreading 将在下篇介绍。首先生成一些凹的数据。
# 生成环形数据
import numpy as np
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=200, shuffle=False)
outer, inner = 0, 1
labels = np.full(200, -1.0)
labels[0] = outer
labels[-1] = inner
# 画图
import matplotlib.pyplot as plt
plt.figure(figsize=(4, 4))
plt.scatter(X[labels == outer, 0], X[labels == outer, 1],)
plt.scatter(X[labels == inner, 0], X[labels == inner, 1],)
plt.scatter(X[labels == -1, 0], X[labels == -1, 1], marker=".",);

标签处理是CDA数据分析师二级考试的核心内容,在给工商银行等银行做内训时,这一部分技能是银行最重视的,因为银行防作弊放欺诈最核心的就是对用户打标签,如果大家想提升这块的能力,点击下方链接。
Label Propagation算法的迭代计算过程是基于图论原理的。在这个过程中,算法首先构建一个图,其中每个节点代表一个数据点,然后通过图中的连接来传播标签信息。下面是详细的步骤介绍:
首先,算法构建一个图,图中的每个节点代表一个数据样本。这些节点包括已标记的节点和未标记的节点。
在图中,节点之间的边代表数据点之间的相似性。这种相似性通常通过一些度量来计算,比如欧几里得距离(用于K近邻方法)或者基于核的相似性函数(如高斯核)。每条边的权重反映了两个节点之间的相似度。
对于每个数据点,算法维护一个标签分布向量。对于已标记的数据点,这个向量直接反映了其标签信息。对于未标记的数据点,标签分布初始通常是均匀的,或者用其他方式初始化。
接下来,算法进入迭代过程。在每次迭代中,每个未标记节点的标签信息会根据其邻居节点(包括已标记和未标记的节点)的标签信息进行更新。具体来说,一个节点的新标签分布是其所有邻居节点的标签分布的加权平均,权重由相似性权重决定。
更新完所有未标记节点的标签分布后,通常需要对这些分布进行归一化处理,以确保它们表示有效的概率分布。
这个过程会不断迭代,直到达到某个收敛条件,比如迭代次数达到预设的上限,或者标签分布的变化小于某个阈值。
一旦算法收敛,每个未标记数据点的标签被确定为其标签分布中概率最高的标签。
# Label Propagation
from sklearn.semi_supervised import LabelPropagation
label_propagation = LabelPropagation(kernel="knn")
label_propagation.fit(X, labels)
# Label Propagation打标签后的结果
output= np.asarray(label_propagation.transduction_)
outer_numbers = np.where(output == outer)[0]
inner_numbers = np.where(output == inner)[0]
plt.figure(figsize=(4, 4))
plt.scatter(X[outer_numbers, 0], X[outer_numbers, 1],)
plt.scatter(X[inner_numbers, 0], X[inner_numbers, 1],);

注意参数kernel="knn"。可以发现,若把kernel换成rbf,则无法得到正确传播结果。这是因为rbf是考虑全局的数据分布,因此内圈初始的标签扩散出去后很难被更新。KNN只考虑局部,不会出现此问题。
数据量大,计算资源有限。
数据点分布稀疏,且局部邻域信息足够区分标签(如聚类明显的情况下)。
数据量较小或中等,计算资源充足。
数据点分布紧密,且需要捕获全局信息(如图像或文本的复杂分布)。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17