
现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年不断有人涌入,也有人并不看好。
对于想转行,尤其是30岁以后想转行数据分析岗的伙伴而言,了解行业的发展趋势、掌握行业入门技能非常有必要。
数据分析需要掌握的技能和知识点不少,但如果非要选择一个技能,我认为是数据可视化能力。
数据可视化旨在借助于图形化手段,清晰有效地传达与沟通信息。它包括图表、图形、信息图、动画和其他有助于简化数据的元素。其目的在于以一种易于理解并吸引受众的方式呈现复杂的数据,让用户更容易识别数据中的模式、趋势、异常值,从而更好的分析数据。
相比于冗长的文字描述,可视化的数据图表能让各类信息一目了然地呈现出来。数据可视化图表在增强信息传达效率,帮助我们在瞬间抓住受众的注意力方面功不可没。
首先,能突出变化发展趋势。例如,在展示年度销售数据时,一个简洁的柱状图可以清晰地对比各季度销售额的高低,让观众一眼就能看出销售趋势,而无需花费时间去解读繁琐的表格数据。
其次,能精准突出关键信息。通过精心设计的图表,能非常好地突出关键信息。如折线图展示时间序列数据的变化趋势、饼图呈现各部分占总体的比例关系等,能够将数据中的关键信息和潜在规律直观地呈现出来。这有助于决策者快速聚焦重点,发现问题或机会。
再次,能提高分析表达效率。提升数据的可理解性对于非专业人士或数据素养较低的受众,复杂的数据表格可能晦涩难懂。而图表可视化模板以图形化的方式呈现数据,使信息更易于理解和消化,降低了数据理解的门槛,促进了信息的广泛传播与共享。
如何将复杂的数据变得更直观,帮助用户从海量信息中提取出关键信息?这是数据分析最基本的要求,而数据可视化能很好地解决这个问题。
深入了解受众是谁,他们的知识水平、技术专长以及期望和目标。基于这些信息,采用适当的格式和设计来呈现数据。
设计数据可视化时,简单性至关重要,整体信息应该非常清晰,没有任何混乱。
删除对受众没有意义的信息。在数据如此丰富的时代,我们必须对展示的内容进行筛选。任何不能强化数据观点的内容都应该从可视化中删除。
减少不必要的设计元素。不需要添加额外的设计元素(如3D元素)来丰富可视化,虽然它看起来很高端,但并不直观易懂。
保持风格的统一性。实施醒目且一致的配色方案、清晰且大小合适的字体,同时利用空白、网格和边距来组织页面布局。大标题、图例和标签也有助于更清楚地解释内容。
3.选择正确的图表类型
不同的数据适合不同的图表类型。例如,折线图是显示趋势的首选,散点图用于揭示关系和相关性,而饼图或圆环图则常用于显示百分比。
根据数据的特性选择合适的图表类型,能够更好地突出数据的重点。
柱状图:适合比较不同类别的数据。
折线图:适合展示时间序列数据的变化趋势。
散点图:用于展示两个变量之间的关系。
热力图:适合展示数据的密度或集中程度。
仪表盘:综合展示多个关键指标,便于快速了解整体情况。
文本在数据可视化中起着重要的补充作用。它包括标签、简短说明段落、标题、图例等形式。但是要注意,无论何时,文本都应服务于提升数据解读的清晰度,而不是分散对数据本身的注意力。
除自己创建数据可视化外,我们还可以考虑引入新一代数据可视化分析工具,它不仅提供了可视化,还集成了数据分析功能,可以有效帮助用户更深入的进行数据探索和洞察。
数据可视化操作步骤并不复杂,难的是如何从海量数据中选取你想要的信息,其关键还在于数据思维的培养。
Tableau Public 是一个免费平台,可以创建和公开分享数据可视化,拥有全球范围内规模极大的数据可视化库。
其功能非常强大,具体包括:
提供了丰富的图形和交互式工具,可以轻松将数据转化为图表,无需编程即可进行复杂的数据分析和挖掘。
具有强大的互动性,同学们可以通过单击、悬停或筛选等方式与数据进行交互。
可以将创建的数据可视化作品嵌入到网页、博客或社交媒体中进行分享。
如果您也想做数据分析类的工作,可以测测自己的数据分析能力,欢迎挑战。
Plotly 的强大之处在于它能够创建出既美观又具有高度交互性的图表,交互式图表,支持Python、R和MATLAB 等多种编程语言。
具有丰富的交互功能,如缩放、拖动、悬停等,能够更深入地探索数据。
提供了多种美观的图表模板和样式选项,使得图表不仅准确传达信息,还具有吸引力,对于美赛画图来说是非常好的利器。
支持多种编程语言,包括 Python、R 和JavaScript,方便不同背景的用户使用。
提供了一个在线编辑器(Plotly Dash),用户可以在其中创建和共享交互式图表。
是一款功能强大的在线图形计算器,以其直观的操作界面和丰富的数学功能而闻名,深受数学爱好者、教育工作者和学生的喜爱。
Desmos提供了多种功能,包括绘图、科学计算、不等式处理、表格处理和统计学分析等,支持LaTeX语法。
绘图功能:能够绘制多种图形,并且不受表达式数量的限制
交互性:提供滑块工具,让用户能够动态调整参数。
数据处理:支持输入数据并绘制图形,生成函数的输入-输出表格。
科学计算:处理复杂的数学运算,如平方根、对数和绝对值。
Visme提供了大量的图片、小图标、模板、字体,供用户制作演示文稿、图表和报告。有了Visme,你可以随时随地查看和呈现你的内容。
可以制作信息图表、报告文件,还是幻灯片模版素材、指示板/控制面板、地图,专业的信息图表和数据可视化工具,拥有丰富的模板库。
可以使用模板创建多种类型的信息图、图表和地图,而且所有的操作都是在网页端完成的。
交互式图表、工具提示、可点击的链接和标签等功能,可以更好地理解和互动。
无需编程技能即可创建专业的数据可视化图表。其智能数据导入向导和简单的操作步骤,使得即使是初学者也能快速上手。
想转行数据分析岗并不难,大家平常可以利用上面提到的数据可视化网站和工具进行自学,也可以通过培训或备考来提升自己的技能水平。
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29