
01专家简介
徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中国人民银行结算中心数据分析内训、华夏银行数据分析内训、苏州银行总行数据挖掘内训项目,英国影子银行风险监管分析,纽约市场对香港市场高频交易分析项目。
在大厂的技术面试中,有两个地方是非常有难度的。很多小伙伴都折在的这两个地方。
我们知道大部分人在写算法的时候,通常都是把函数的前几个字母打出来,或者变量名的前几个字母打出来。按一下Tab或者按一下快捷键,就可以带出整个的函数名,然后自己就可以继续往后去写了。
比如说,之前就有一位小伙伴在笔试的时候拿到了一个手写算法的题。
那么分类算法比较好的有什么?有XGBoost,对吧?于是,小伙伴大笔一挥写下了import XGBoost。
扣分的原因是什么?
sklearn里那个包的名字叫什么?叫XGBoost吗?不是,那个包的名字叫XGBClassifier。
这是一个很让人痛苦的事情,算法你会,但是你写不出来。
那就要求大家在日常的学习与工作中,一定要把常用的算法语句用的滚瓜烂熟,才可以让我们在这样的问题上有比较好的回答成果。
CDA数据分析师的能力测试大家可以抽空做做,提高一下自己对模型、函数的敏感度。
第二个在大厂面试中的难点是,把一个技术问题往下深挖好几次。
比如说最简单的一个算法回归分析。有可能在面试的时候面试官问你:
—— 同学,线性回归会吗?
—— 线性回归不能有共线性,你知道吗?
Ok,开始提问。
你解释了一下。我相信大部分小伙伴都可以解释的很清楚。
下面再往下挖一层:怎么检测共线性?
有的小伙伴可能直接就说,共线性嘛,系相关系数就可以啊。
结果被扣分了。为什么?
我们现在要检测的是线性回归里的相关性,那是要考虑偏相关问题的。只用相关技术矩阵可以吗?不够用的,应该用一些更加深入的指标,比如说VIF值等等去检测。
比如说这个问题你正确的回答了出来,检测变量之间的相关性,可以使用VIF值。
那就再往下挖,为什么要检测变量之间的相关性呢?
如果我不考虑这个问题会有怎样的结果出现,那么你不能只回答,如果不考虑共线性问题的话,我这个模型预测效果不好。
显然面试官想要的不是这么直接的回答,他想问你的是这个问题的技术细节。
所以你在这个地方应该回答出的是:
如果我们不处理共线性的问题,就会导致最后最小二乘法所需要的逆矩阵在被计算的时候,这个矩阵的行列式的值就会非常小。于是导致我们求出来的逆矩阵就会非常的大。这是一个非常不好的结果。你求出的矩阵,用这个矩阵算出来的所有参数的取值全都趋近于正无穷,你觉得这个效果能好吗?显然有问题。
如果到这儿你仍然可以准确的回答出来,这已经被挖了三次了,但是你要知道这个问题还可以继续往后挖。
我们再往后挖就是,如果普遍检测出了一共10个变量,这10个变量普遍VIF值都比较高,我们有什么好的方法来处理?
有同学可能马上就会说,正则化方法嘛。
正则化方法又可以问问题了。
正则化方法有偏还是无偏?用完了以后效果怎么样?哪个包可以实现?
我们发现这种技术问题,面试官可以就一个点给你一直往下深挖好几层。
我看过一个调查,同一个问题,当一般往下深挖到第5层的时候,大部分人就已经回答不出来了。
所以这就要求大家平时在学习与工作中,要把每一个技术细节都掌握好,要把技术细节之间的联系找到。因为往下深挖,其实挖的就是这些技术点之间的联系,这是第二个在大场面之中非常容易折的一个点。
CDA数据分析师认证考试的一级和二级都注重对基础概念和知识的挖掘,这些考点都是结合给大厂、银行、金融机构内训总结出来的工作中最实用的技能和知识点。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22