
在机器学习领域,分类是一种常见的任务,旨在将输入数据划分为不同的类别。为此,有许多不同的分类模型可供选择,每个模型都有其特定的优势和适用场景。以下是常见的一些分类模型:
逻辑回归(Logistic Regression):逻辑回归是一种简单而有效的线性分类算法。它通过使用逻辑函数来估计一个实例属于某个类别的概率,并根据阈值进行分类。
决策树(Decision Trees):决策树模型使用树状结构来进行分类。每个内部节点表示一个特征或属性,而每个叶节点表示一个类别。通过根据特征进行逐步分割,决策树能够对新数据进行分类。
随机森林(Random Forests):随机森林是一种集成学习方法,基于多个决策树构建的模型。它通过在随机选择的子样本和特征上训练多个决策树,然后利用投票或平均预测来确定最终的分类结果。
支持向量机(Support Vector Machines):支持向量机是一种二分类模型,通过将样本映射到高维空间来找到一个最优的超平面,以将两个类别分隔开。支持向量机能够处理非线性决策边界,并具有较好的泛化能力。
K近邻算法(K-Nearest Neighbors):K近邻算法根据训练数据中与新实例最接近的K个邻居的标签来进行分类。它基于邻居的多数投票或相似度加权计算,确定新实例所属的类别。
朴素贝叶斯(Naive Bayes):朴素贝叶斯分类器基于贝叶斯定理和特征之间的条件独立性假设。它通过计算给定类别的条件概率来预测新实例的类别。
神经网络(Neural Networks):神经网络是一种复杂而强大的分类模型。它由多个层次组成,每个层次包含多个神经元。神经网络通过学习权重和偏差的调整来逐渐优化其分类能力。
梯度提升树(Gradient Boosting Trees):梯度提升树是一种集成学习方法,通过串行训练多个决策树来提高模型性能。每个新的决策树都尝试纠正前一个树的预测误差,从而逐步改进模型。
集成学习方法(Ensemble Methods):集成学习是将多个分类器组合起来以获得更好性能的方法。除了随机森林和梯度提升树之外,还有其他集成学习方法,如AdaBoost和Bagging。
这些是机器学习中常见的一些分类模型。每个模型都有其自身的优势和适用场景,因此在选择模型时需要考虑数据特征、问题要求和实际应用等因素。对于特定任务,可能需要尝试多个不同的模型,并选择最适合的模型来获得最佳的分类性能。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12