京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析和机器学习任务中,数据清洗和预处理是非常重要的步骤。这些过程可以帮助我们从原始数据中提取有价值的信息,并减少由于数据质量问题导致的误差和偏差。
本文将介绍数据清洗和预处理的基本步骤和技术,并提供一些实践建议和例子。
数据清洗是指在进行分析之前,对原始数据进行筛选、去除、修正和填充等操作,以确保数据的质量和完整性。以下是一些常见的数据清洗步骤:
缺失值是指数据集中某些记录或字段缺少数值或信息。如果不处理好缺失值,可能会影响后续分析和模型的准确性。常用的缺失值处理方法包括:
异常值是指数据中极端的、与其他数据明显不同的数值,可能是由于数据输入错误或测量误差等原因造成。如果不进行处理,可能会影响模型训练和预测结果。常用的异常值处理方法包括:
在实际工作中,数据集中有些字段的数据类型可能与需要的格式不一致,需要进行类型转换。例如,将文本类型转换为数值类型、日期时间类型转换为时间戳等。
有时候,数据集中会有重复的记录,这可能会影响分析和建模的准确性。因此,需要进行去重处理,保留唯一的记录。
数据预处理是指在清洗完数据之后,进一步对数据进行加工和转化,以便于后续分析和建模。以下是一些常见的数据预处理步骤:
特征选择是指从数据集中选择对分析和建模最有用的特征。对于一些无关或冗余的特征,可以通过相关性分析、卡方检验、L1正则化等方法进行筛选。
不同的特征可能具有不同的数值范围和刻度,这会影响机器学习算法的表现。因此,需要对特征进行缩放处理,常用的方法包括归一化(将特征值缩放到[0,1]之间)和标准化(将特征值转换为均值为0、方差为1的正态分布)。
特征构造是指通过组合、变换和衍生原始特征,生成新的特征以提高模
型的性能。例如,将时间戳转换为日期、提取文本中的关键词、构造交叉特征等。
通常将数据集划分为训练集、验证集和测试集三部分,以进行模型训练、调参和评估。一般建议将数据集按照7:2:1的比例划分为训练集、验证集和测试集。
数据扩增是指通过对原始数据进行变换、旋转、裁剪、颜色变化等操作,生成新的样本以增加数据集的多样性和数量。数据扩增可以有效地防止过拟合,并提高模型的泛化能力。
在进行数据清洗和预处理时,需要注意以下几点:
数据清洗和预处理是数据分析和机器学习任务中不可或缺的步骤。通过适当的处理,可以提高数据的质量和可用性,并为后续分析和建模奠定基础。在进行数据清洗和预处理时,需要理解数据、制定处理策略、保留备份和总结经验等,才能取得更好的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15