
我相信这些课程是如此重要,因为它们有助于拥有一个成功的数据科学职业生涯。读完这篇文章后,您会意识到,要成为一名优秀的数据科学家,不仅仅是构建复杂的模型。
话虽如此,以下是我在数据科学生涯中学到的3个最重要的教训!
其中一件事是,几乎所有的数据科学课程和训练营都强调并详细阐述了项目生命周期中的建模阶段,而实际上,这只是整个过程的一个很小的组成部分。
如果在工作中构建一个初步的机器学习模型需要一个月的时间,那么您可能需要花一个月的时间来事先理解业务问题,然后记录和社交项目。
不仅建议您在构建模型之前和之后完成这些步骤,而且这对项目的成功至关重要。
让我们深入探讨每一个问题的重要性:
这三个步骤有什么共同点?它们都是交流的一种形式。事实上,我认为良好的交流是数据科学家和高级数据科学家之间的区别。
当我开始学习数据科学时,我试图学习最复杂的概念,而不学习基础知识。
经过多年的经验,我已经意识到,基础知识足以让你在职业生涯中取得80%以上的成功。为什么?简单的解决方案总是会赢。它们更容易理解,更容易实现,也更容易维护。一旦一个简单的解决方案证明了它对公司的价值,只有这样,您才能研究更复杂的解决方案。
那么基本面到底是什么呢?
经过3年的工作,我确信掌握SQL是成功职业生涯的关键。SQL并不是一项难以学习的技能(例如,从哪里选择),但它肯定是一项难以完善的技能。SQL对于数据争论、数据探索、数据可视化(构建仪表板)、构建报表和构建数据管道至关重要。
如果你想掌握SQL,请看下面我的指南:一个完整的15周的课程来掌握数据科学的SQL
对基本的描述性和推论性统计有一个很好的理解也是非常重要的。
描述性统计信息允许您以简单的方式总结和理解数据。
推理统计允许您根据有限数量的数据(样本)做出结论。这对于建立解释模型和A/B测试是必不可少的。
Python主要用于执行EDA和特性工程。也就是说,这两个步骤也可以使用SQL来完成,所以要记住这一点。我个人喜欢在我的技术栈中使用Python,因为我发现在Jupyter笔记本中执行EDA比在SQL控制台或仪表板中执行EDA更容易。查看:探索性数据分析的一个详细的一步一步指南
构建、测试、迭代、重复。
通常,在一个模型上花费更少的时间来将初始版本投入生产并从那里进行迭代总是更好的。为什么?
我想说明的一点是不是催促您的项目,而是快速部署它们,以便您可以接收反馈、迭代和改进您的项目。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11