京公网安备 11010802034615号
经营许可证编号:京B2-20210330
公司正在向市场研究和商业分析投入大量资金,为长期数据科学家和该领域的新手创造新的机会。与此同时,就业市场也变得更加竞争激烈。数据科学职位的平均薪酬正在上升,因为这些工作对企业来说变得更加重要,这鼓励招聘经理更仔细地审查新员工。
数据科学家想要保持竞争力或进入该领域,就需要正确的方法。这些技巧将帮助他们寻找和确保一个新的职位。
人们产生的信息比以往任何时候都多--专家认为,到2025年,全球数据有望超过175个字节。与此同时,AI和大数据分析的创新使大型数据集对企业来说比以往任何时候都更有价值--但前提是它们必须与训练有素的科学家合作,这些科学家可以揭示必要的洞察力。
在所有接受调查的企业中,有一半的企业以这样或那样的方式使用了人工智能,更多的企业表示,他们计划在不久的将来进一步投资于数据驱动的解决方案。
现在,一个数据科学职位招聘收到数百份申请并不罕见。更高的需求也意味着薪酬的上升,企业在雇佣这些职位的人时更加谨慎。
作为回应,许多招聘经理夸大了数据科学新职位的工作要求--要求更高的资历、更多的经验和更多的关键字。即使是资历良好或学术记录良好的数据科学家,现在也不能保证得到一个职位。
想要进入这个领域或获得一个新职位的数据科学家需要正确的策略才能成功。这六个小贴士将帮助成熟的专业人士和那些新进入该行业的人安全工作。
熟悉流行的行业关键词--如Python、SQL、AI和数据分析--可以帮助你写一份简历和简历,更有效地传达你的技能,并通过招聘经理经常使用的简历筛选器。
跟上不断变化的行业需求也能帮助你保持竞争力。虽然Python仍然是一项基本技能,但更多的企业希望熟悉深度学习、梯度提升机器和大数据分析。许多公司还希望申请者在过去使用过各种各样的数据挖掘和分析方法。
在申请人工智能知识的职位时,强调数据科学和机器学习方面的知识可能会帮助你获得面试机会。
同时,关键字填充,即在简历中不自然地填入关键字以击败简历扫描仪或吸引招聘经理的注意的行为,应该避免。试着只在简历或简历中使用它们,当它们相关时,帮助你解释你独特的背景和数据科学技能集。
研究一下大公司是如何雇佣数据科学家的,也可以帮助你改进简历和简历。人工智能和ML公司Daitaku最近在一个关于它如何在国际上找到数据科学家的案例研究中受到了关注。该报告强调了技能设置比地理位置更重要。
求职最佳实践通常也有助于数据科学家寻找新的职位。为你申请的每一份工作量身定制你的简历和求职信将需要一些额外的努力。尽管如此,它可以帮助你在面试前交流你的特定技能,并说明你是如何适合某个职位的。
积极与其他数据科学家和招聘人员建立联系,寻找专业人士,可以帮助你扩大关系网,更容易找到与你的技能和经验水平相匹配的职位。
在等待招聘经理回复的同时,你也可以寻找短期工作,这可以帮助你进一步发展技能,并在简历中添加一两个要点。
需要数据科学家但难以填补新职位的企业可能会向合格的申请人提供临时和自由职业工作。像UpWork和自由职业者求职板这样的平台可以为你提供这些职位的线索。
数据科学家的职位比以往任何时候都多,但这并不意味着市场竞争减弱。数据科学日益增长的价值和熟练应聘者的缺乏使得公司非常谨慎地招聘。
数据科学家想要找到一个新的位置或打入市场,应该紧跟行业趋势,熟悉各种挖掘和分析技术。求职的最佳实践--比如定制简历和谨慎使用关键词--也可以帮助他们获得面试机会。
通过使用这些技术,您可以在众多竞争对手中脱颖而出,并获得理想的数据科学工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22