
作者布兰登·科斯利,FastDataScience.ai
数据科学家需求不足,没有两种方法。工作岗位嗯,有很多空缺,这个行业似乎只是在这个后疫情时代的数字世界里才有所增长。因此,数据科学专业的学生也是世界劳动力中日益增长的一部分,这就不足为奇了。但是学习数据科学并不容易。事实上,它是错误的,而且很难有几个好的原因:
1.数据科学作为一个专业融合了许多不同的子专业,这些子专业本身就是专业,如数据工程、编程、统计学和数据可视化。
2.该行业及相关工具和技术正在迅速发展,使人很难知道将研究重点放在哪里。
3.教育机构(大学、数字教程)教授的数据科学与企业使用的数据科学之间存在差距。
4.由于所需知识的广泛性,很容易对一个人向未来雇主有效地传达自己所受教育的价值的能力失去信心。
我记得我自己试图从一个精通数据的学术研究员变成一个行业数据科学专业人士的经历。我把自己暴露在所有的教程、博客和MOOC中,我可以。我沉浸在行业新闻和趋势中。我把我的桶装满了,发现我学得越多,我就越意识到我不知道。我压力很大,对自己拥有的技能缺乏信心,感觉自己就像一个冒名顶替的人,去参加数据科学面试,希望自己不会被“抓住”,因为我没有花足够的时间在损失函数上。
我全神贯注于数据科学教育,希望我的广泛接触能引导我实现我的目标,并获得更好的薪水。我当时没有意识到的是,我已经本末倒置了。我是如此渴望学习,以至于我把所有的时间都花在学习很多“东西”上,从来没有停下来问自己;所有这些“东西”如何结合起来解决真正的问题?
请允许我告诉你一个明显的秘密,大多数企业不关心数据科学“东西”,大多数企业只关心这些东西是否能解决业务问题。因此,问题就在这里,试图学习数据科学的所有工具,这样你的简历就可以充满一个不断扩大的“东西”列表(Python、R、回归、随机森林、幼稚贝叶斯、马尔可夫链、支持向量机、k-means聚类、XGBoost、卷积神经网络、自然语言处理,等等)是徒劳的。
这些“事情”不会把你引向你的目标,因为你的目标只是由你觉得自己被重视的地方来定义的。您将感到有价值的地方是允许您不断发展的数据科学知识应用于解决问题的地方。能够交流如何利用一些数据科学工具来解决问题,将比简单地列出您在一个或另一个类中接触过的所有算法在业务上走得更远。
总之,先找个目的。你关心什么?你的激情在哪里?你想解决什么问题?一旦你有了一个列表,选择一些东西,并考虑如何应用你的数据科学知识来解决与该兴趣相关的问题。
通过首先找到你的目的,你将结合上下文来学习你的数据科学教育,你将寻求学习的工具将感觉不那么压倒性,因为有任何意义的应用工具必然会更少。
知识、激情和对问题的理解也会开启你的创造力。创造性的问题解决是看到我们对两个或更多不同领域的理解如何以新颖的方式结合在一起。如果我们只在我们的“罐头”数据集和冷静分配的问题的背景下学习数据科学,我们就不再能够从多个领域跨越我们的知识深度。
通过首先找到您的目的,您将很快了解到解决相同问题有许多不同的数据科学解决方案。换句话说,在数据科学中很少有对错之分,更常见的是业务问题可以用无数种方法来解决。有些解决方案比其他的好吗?当然可以。但这并不意味着那些不是最优的就是错的,相反,它们只是没有那么好。有了足够的钱和时间,总有一个“更好”的解决方案,所以最好不要太过陷入这种螺旋。相反,关注你所拥有的知识如何能带来比以前更多的价值,或者通过揭示在其他人身上不明显的新见解来增加现有的解决方案。
通过首先找到你的目的,你将解决大多数数据科学课程中经常没有教的问题,但它们是企业数据科学家每天都要面对的问题。以寻找正确数据的简单问题为例。大多数数据科学课程不会教你数据发现的价值,但在企业中,数据科学家通常负责发现并与新的数据集混合,以进一步实现收集的数据和雇佣的数据科学家对其进行评估的价值。先有目的地学习数据科学将迫使您寻找获取与您的问题最相关的数据的方法,它将要求您访问、争论和设计这些数据,以便它能够用机器学习模型进行训练。
最后,通过首先找到您的目的,您将知道如何传达您构建的解决方案的价值。
我的目的是社会公正。我想使用数据科学的工具和技能来提供信息,以产生揭露不公正的洞察力,为积极的社会变革提供解决方案,并帮助我们认识到人类偏见的含义。
在我的第一个项目中,我想帮助三班工人识别车辆犯罪的口袋,以支持更安全的停车决定。我必须找到当地公共警察报告数据,并将其与人口普查数据等其他数据源混合。利用我所拥有的数据科学知识,我可以建立一个预测模型,根据周围位置的特征来预测汽车经历车辆犯罪(例如盗窃、破坏)的可能性。这个项目让我学会了基本的数据争论,如何导出一些地理空间特征,测试不同分类模型的准确性,如随机森林、逻辑回归和朴素贝叶斯,使用Tableau Public进行基本的可视化,以及如何设置管道在每次刷新警方数据时刷新仪表板。
还有其他问题我可以解决吗?当然了.我可以用其他工具来解决这个特定的问题吗?最肯定的是。我想出了最好的解决方案,甚至是市场上唯一的解决方案吗?不是一个机会,但我的解决方案比那里的更好,这没什么。
我不仅学习了上面提到的具体工具,而且对数据科学的过程获得了更多的直觉。我能够更清楚地阐明为什么我希望使用特定数据类型的特定分类模型而不是其他分类模型。最重要的是,我能够充满激情地谈论这些工具是如何让我通过结合数百个数据点来做出明智的决定的。
现在,当面对新的目的,并询问是否有数据科学解决方案来克服与该目的相关的问题时,我不再对我不知道的事情感到缺乏信心。我利用这个目的来应用我所知道的,解释我的方法,并确定一些新的东西要学习,并相信我可以。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23