市场上有很多工作需要你有数据科学背景。有时会让人困惑。这让你很难知道你是否胜任一份工作。有时,公司有重叠的工作描述,甚至他们自己对工作应该涵盖的任务的具体理解(和名称)也没有帮助。
我们将为您提供一个指南,帮助您应付所有需要数据科学背景的不同数据科学职位。因为这些数据科学工作需要相同或非常相似的技能,所以我们将首先讨论这些工作之间的相似之处。我们还将介绍找到一份工作所需的资格和数据科学技能,以及你可能会遇到的面试问题。然后我们会讨论一些具体的工作描述,技术技能和职业轨迹,包括工资。
如何获取?
数据科学,顾名思义,是几个学科之间的十字路口。它涉及编程技能,结合数学和/或统计知识以及业务领域的专业知识。从这个定义中,我们可以回答科学家的数据通常来自哪里。
他们的正规教育通常包括计算机科学、数学、统计学、经济学或任何类似的定量领域的学位。对于一些数据科学工作来说,人文领域的学位也是不错的选择,尤其是如果这份工作更注重人的行为。
根据工作资历的不同,你可能会被要求拥有硕士学位甚至博士学位。
我需要什么技能?
这取决于很多因素,当然,不同的数据科学工作之间也有差异。然而,对于几乎所有需要数据科学背景的工作,您都需要具备一些技能。唯一的区别是你在工作中会在多大程度上使用这种技能。
职业轨迹
你可以成为一名数据科学家,没有一种方法,也只有一种方法。这取决于你的教育和以前的工作经验。然而,人们通常是从数据分析师开始的。然后,根据他们的兴趣和技能,他们通常朝着两个方向前进:一个是更多地与数据和数据基础设施合作,另一个是更专注于数据分析。
你可以在下面的插图中看到这个轨迹。有些工作有时需要其他教育,如商业或人文学位。
所有这些途径都可以让你成为一名数据科学家。你可以在多个方向移动;这完全取决于你的公司,职业发展,兴趣等等。
以下是你可以在下面的工作细分中找到的数据科学工作标题列表。该表显示了数据科学工作标题和平均年度总薪酬。我们已经根据上面的职业轨迹安排了工作。这样,如果你走一条典型的成为数据科学家的道路,你就能明白你的工资会如何上涨。
Job title | Average total compensation ($USD) |
Data analyst | $70k |
Database administrator | $84k |
Data modeler | $94k |
Software engineer | $108k |
Data engineer | $113k |
Data architect | $119k |
统计学家 | $89k |
Business intelligence (BI) developer | $92k |
Marketing scientist | $94k |
Business analyst | $77k |
Quantitative analyst | $112k |
Data scientist | $139k |
Computer & information research scientist | $142k |
机器学习 engineer | $189k |
查看我们以前的文章,科学家们用多少数据来发现工资,以及工资是如何受到几个因素的影响的。
职务描述
数据科学家是使用数学、统计和编程技能从数据中获得洞察力的人。他们将收集、组织、清理和分析数据。这部分与数据分析员一样。但是,它们更具有前瞻性和预测性。他们将使用这些数据来建立机器学习模型。他们通过在可用数据中发现趋势、模式和行为来帮助他们做出预测。他们这样做是为了解决业务问题,提高公司在销售、客户经验、成本、收入等方面的业绩。
这是最一般的角色描述,它涵盖了作为具有数据科学背景的人所需要的大部分技能。下面你会发现的所有其他工作都是这份工作的衍生物,需要不同的数据科学知识和技能的技术重点。
所需技能
编程语言
平台工具
技术技能
技术重点
数据分析和报告。
职务描述
本数据科学职位要求收集、组织和清理数据。之后,他们被要求执行定期和临时分析并提供报告。通过这种方式,它们可以帮助做出业务决策,并解开一些业务问题的答案。数据分析员通常需要将数据可视化并交流他们的分析结果。在某种程度上,我们可以说,数据分析师是在用数据来描述过去和现在,而数据科学家则是在用数据来预测未来。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
数据基础设施、数据清洗、数据准备和操作。
职务描述
数据工程师的主要任务是开发和维护数据基础设施。它的目的是将数据转换成“可分析”的格式,并使数据科学家和数据分析员能够获得这些数据。这意味着他们必须收集、维护、操作和加载数据以供其他人使用。与数据分析师和数据科学家相比,数据工程师更专注于提取、转换和加载(ETL)数据。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
模型构建和部署到生产
职务描述
这个数据科学的职位要求你设计、构建和维护人工智能(AI)软件和算法,这些软件和算法将自动预测模型,并使机器能够在没有任何操作指令的情况下运行。为此,您必须组织和分析用于训练和验证机器学习模型的数据。这一描述表明,机器学习工程师与数据科学家是相同的,只是专注于构建和部署机器学习模型。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
研究计算、用户和业务问题。试图理解用户、产品和功能的深层次问题和行为。
职务描述
这个数据科学的职位比我们经历过的其他职位更多的是理论和研究层面。研究科学家探索计算问题,然后改进现有算法或编写新算法来解决这些问题。他们还创造了新的计算语言、工具和软件,以改善计算机的工作方式和用户的使用体验。
通常,你会在三个领域中的一个领域工作,重点是硬件、软件或机器人。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
应用于营销和销售数据的数据科学,解决与营销和销售相关的业务问题(例如,现场力量规模和营销ROI)
职务描述
在这个数据科学职称下工作的人是使用科学方法处理营销数据的人。通过正确解释数据,在数据中找到揭示客户行为的公共模式,您将这样做以支持决策。为了达到这个目的,你将进行实验来证实或否定这些假设。这与数据科学家基本相同,但您使用的是营销类型的数据,如电子邮件参与数据。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
构建图形仪表板
职务描述
BI开发人员是一个精通数据的工程师,他开发和维护BI接口,并使用BI工具。这些工具允许查询和可视化数据、创建仪表板、定期和临时报告。在某种程度上,这是一个数据工程师(ETL)、数据分析师(分析和报告)和软件工程师(软件开发)的组合。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
类似于数据分析师,但也可以专注于内部报告,如财务和改善公司的系统和流程。
职务描述
这个数据科学的职称评估公司的系统和流程。他们分析它们并提出解决方案,通常以改进或新的系统和其他技术改进的形式。这样做的目的是为了降低成本,提高公司的效率和决策,从而赚取更多的钱。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
数据建模与数据库设计
职务描述
他们的工作是设计、改进和维护数据模型,然后将其转换为数据库实现。他们这样做的目的是提高数据可用性和数据库性能。为此,他们需要与数据管理员和数据架构师合作。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
数据库管理与维护
职务描述
这个数据科学的职位是负责,嗯,数据库管理。这意味着他们在数据库实现中与数据建模师和数据架构师一起工作。只是它们更侧重于实际和技术问题,而不是概念问题。他们的工作是确保数据库的可用性,这包括允许(或不允许)访问数据库,备份和恢复数据,确保数据的安全性和完整性,以及数据库的高性能。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
数据管理的体系结构和基础设施
职务描述
与数据建模师和数据库管理员相比,数据架构师是一个需要高层次观点的数据科学职位。数据架构师的工作是考虑公司的业务需求,并开发完整的数据管理体系结构。这不仅仅涉及数据库,还包括如何收集、使用、建模、检索和保护数据的框架。一般来说,这意味着提供一个从数据进入公司到离开公司的体系结构。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
技术重点
软件开发
职务描述
这个数据科学的职位头衔相对类似于数据工程师。主要的区别是他们通常不像数据工程师那样关心数据基础设施。相反,他们在此数据基础设施之上构建软件,这允许最终用户使用底层数据和数据基础设施。
与数据科学家相比所需的其他技能
程序设计语言
平台工具
技术技能
技术重点
数据统计分析
职务描述
这个职位头衔与数据科学家基本相同。不同的是,它只专注于数据科学家工作的统计部分。他们还分析数据,将统计方法应用于数据,并识别模式和趋势,这将提供业务洞察力和支持决策。
与数据科学家相比所需的其他技能
程序设计语言
平台工具
技术技能
技术重点
专注于金融数据的数据科学家
职务描述
这份工作与数据科学家基本相同,但专注于金融数据。量化分析师(或“量化员”)将分析数据并建立模型,以帮助公司了解金融市场及其趋势。根据这些分析和模型,公司将决定其投资、外汇和股权交易、贷款批准等。
与数据科学家相比所需的其他技能
编程语言
平台工具
技术技能
数据科学是一个广阔而不断发展的领域。我们给你的14个不同的数据科学工作类型的列表不是最终列表,因为新的数据科学工作类型几乎每天都在创建。这也取决于公司的组织和规模,他们将如何称呼某个职位。这可能意味着将几个工作类型合并为一个,或者将一个工作类型分解为几个子类型和专门化,所有这些都由几个人执行。
然而,这些数据科学工作标题通常涵盖了具有数据科学背景的工作。每个职位描述都是具体的,但我们相信你会在我们的网站上找到适合所有职位的面试问题。您可以在不同的编码问题和非编码问题之间进行选择,所以请自便。
相关:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03