
当我第一次申请l时,我想同时成为一名自由职业者和一名“真正的ML工程师”。
在此之前,我在Nordeus担任机器学习工程师,Nordeus是一家顶级移动游戏公司,以其旗舰游戏TopEleven上有穆里尼奥的脸而闻名。我在Nordeus的机器学习经历包括设计和实现一个智能系统,以帮助客户支持团队更快地解决玩家问题。它的本质是从大量的历史球员门票和代理决议中构建一个文本分类器。
我考虑了整个系统,数据(至少我是这么想的),以及对GPU的访问。从纸面上看,一切似乎都对我来说刚刚好,可以展示一个伟大的模型和一个更好的解决方案。
但这从未发生过。令我绝望的是,我花了一个多月的时间才意识到,我试图用来训练我的监督模型的数据集已经非常糟糕了。在意识到这一点之前,我花了数不清的时间和Jupyter笔记本试图让整个事情运转起来。我工作太忙了,抽不出时间看资料。我们可以说我缺乏经验没有帮助。
在这个失败的项目三个月后,我决定辞去工作,在Toptal开始我的自由职业之路。经过几轮面试和技术筛选,我进入了最后一轮。猜猜看?我得解决一个机器学习作业。几乎和我以前失败的那个一模一样。我有一周的时间来完成它。
很难描述那一周我不得不与之作斗争的消极自我谈话的数量。冒名顶替综合症的长长的阴影迷惑了我的头脑。
这一章有一个圆满的结局。我很好地解决了这个问题,我进入了托普塔尔。三年10个项目后,我可以说我处理冒名顶替综合症好多了。
勇敢是对你帮助最大的事情。自由职业者是勇敢的。如果你想了解更多,请查看我以前关于如何成为自由数据科学家的文章。
当你作为自由职业者/承包商工作时,来自你工作的反馈不会出现在季度或年度审查中。它每天都来。没有办法破解。客户期望您提供质量和快速。顺便说一句,这就是为什么你会比在目前的工作中得到更好的报酬的主要原因。
一旦你觉得你已经掌握了ML的基本原理,就把自己放在拳击台上。考验你自己。你很聪明,你能做到。参加更多的在线课程并不能让冒名顶替综合症消失。相信我.
IMHO排名前2的自由职业平台是
由于数据(大写字母,是的),ML工程比传统软件工程更难。
很少有机会给你一套完整的特性和标签来构建你的ML模型。相反,您通常需要自己生成训练数据。在这个意义上,我遇到的最常见的问题是:
数据是推动所有模型的神奇成分,从简单的线性回归到巨大的变压器模型。如果燃料不好,你开哪辆车都无关紧要。你不打算搬家。
这听起来如此琐碎和愚蠢,以至于我们(我包括我自己)ML工程师有一种令人惊讶的忘记的倾向。当您获得更多构建ML解决方案的经验时,您会更好地记住这一点,并在遇到问题时返回数据。
不能使用Stackoverflow调试数据集。你一个人在那里。你需要改变你的心态。你必须表现得像个解决问题的人。您需要了解数据集,最好的方法是将其可视化。我个人喜欢Tableau Desktop,但也有其他选择,如Power BI、Apache Superset等。如果您愿意,甚至还有Python库,如SweetViz。
无论您喜欢哪种工具,每次卡住时都要返回数据。
机器学习是一个涵盖广泛技术复杂性的领域:软件开发、操作化(MLOps)、经典ML、深度学习的前沿研究、硬件优化…
如果你试图掩盖一切,你会失去焦点,在表面上游荡太多。了解ML中的某些内容意味着您已经自己实现了它。句号。
例如,跟上DL的最新进展是非常棒的。但要有原则地去做。为自己设定一个明确的目标(例如,我想成为变压器模型的专家),并为自己建立一条通往该目标的道路,选择相关的论文、图书馆、网络研讨会,甚至会议。
从一个话题跳到另一个话题让你很忙但注意力不集中。保持谦逊。从小处着手,集中精力。一旦你到达那里,迈出下一步,征服另一个领域。
克服你的恐惧是每天(全职)的工作。不仅仅是在机器学习中,而是在你生活的每个方面,在这些方面你希望明天成长和变得更好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29