京公网安备 11010802034615号
经营许可证编号:京B2-20210330
三年前,我面临着一个将伴随我余生的决定--“<我>我要做什么谋生?”我刚刚完成高等教育,高中刚刚毕业。
在与朋友和家人讨论了很长时间后,我选择了“21世纪最性感的工作”。我决定攻读数据科学本科学位。
当时,我选择了数据科学,因为我不知道我的选择。我听说了一个很受欢迎的领域,它承诺灵活的工作时间和丰厚的工资支票,并决定专攻它。
然而,在数据行业工作了一年多后,我逐渐意识到数据科学只是我可以选择的众多职业道路之一。
数据行业有许多不太受欢迎的角色需求很高,薪酬也很高。
在本文中,我将描述数据行业中三个最有前途的职业选择--数据分析、数据科学和数据工程。
数据工程师是数据行业的无名英雄。他们整合了大量数据,并构建了其他数据专业人员可以轻松访问的可伸缩管道。
如果没有数据工程师所做的所有数据准备工作,数据科学家将无法建立机器学习模型。
在过去的几年里,随着公司开始意识到拥有一个可伸缩的数据框架的重要性,对数据工程师的需求有所增长。
数据工程师是这个列表中三个角色中技术含量最高的。他们设计数据库模式,管理系统中的数据流,并执行质量检查以确保数据一致。
为了成为一名数据工程师,您需要具备软件设计、数据库架构、devops和数据建模方面的技能。您还需要有一个强大的SQL命令。熟悉Python和Bash等脚本语言通常是数据工程工作描述中的一个要求。
数据分析员是组织数据以确定可以支持决策的趋势的个人。
这些人利用他们的技术和领域知识提出可以帮助企业发展的建议。
以下是一个数据分析师工作流的简单示例:
数据分析师通常执行类似于上面描述的任务。
为了识别客户价值并像上面那样对他们进行分组,分析师需要对公司提供的产品有很强的理解。他们还需要在商业和营销等领域拥有专业知识。
数据科学家的工作范围经常与数据分析师的工作范围混淆,这是因为他们的技能有很大的重叠。
然而,这些角色之间的主要区别是数据科学家建立机器学习模型,而数据分析师不。
数据科学家需要具备与分析师非常相似的技能。他们需要了解如何收集和转换数据,创建
可视化,执行分析任务,并在数据的帮助下解决业务问题。
除了上面列出的所有技能,数据科学家还需要知道如何创建预测模型。
以下是一个数据科学家工作流的示例:
数据科学极其受欢迎,围绕该领域有很多炒作。不过,数据行业还有其他职业增长迅速,在薪酬和需求方面同样看好。
数据科学家、工程师和分析师对数据生命周期同样重要。组织需要所有这些领域的专业知识,以便提出数据驱动的决策,增加业务价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26