京公网安备 11010802034615号
经营许可证编号:京B2-20210330
列联表和卡方检验 分类变量之间的相关性一般可以采用列联表分析或卡方检验的方法来进行验证。 列联表是两个分类变量的分类水平之间形成的交叉频数表,通过计算行百分比或列百分比,对实际频率和期望频率进行对 比分析,例如一个典型的列联表如下:
对于表中频数、期望频数、行/列百分比的解读方法要熟练掌握。 比如98代表的是头发颜色为金色,眼睛颜色为深色的样本数量。 而355.2则是期望的数量。6.7%是行百分比,也就是在所有头发颜 色为金色的样本中,眼睛颜色为深色的占比。
列联表是一种比较简单的描述性统计方法,而卡方检验则可以通过量化的方法对两个分类变量的相关性进行检验,卡方统 计量如下:
在掌握了列联表分析和卡方检验的基础上,可以学习使用逻辑回归对分类变量进行预测。 逻辑回归主要处理的就是分类问题。事实上,也可以把他看作是线性回归一种延伸。我们面对的因变量,也就是模型输出 结果不再是一个连续变量,而是一个分类变量。最常见的逻辑回归就是二分类变量逻辑回归,通常我们可以使用这种方法 来寻找目标客户。
1.进行逻辑回归时,我们希望选择的变量尽可能地有效,避免冗余。常用的变量筛选方法有如下几种:
Wald检验:通过Wald统计量,来检验自变量对因变量的影响能力。Wald越大,说明自变量的相关性越大,越应该保留。
似然比检验(Likehood Ratio):也是逻辑回归非常常用的一种检验方法。逻辑回归模型的估计一般是使用最大似然估计, 也就是说找到一个似然函数L,使其达到最大值。L越大,也就说明模型的预测效果越好。因此似然比检验本质上是对包 含或者不包含某一个或者几个变量的模型L值进行比较,从而做出判断。
比分检验(Score Test):以包含某个或者某几个变量的模型作为基础,加入系数为0的新变量,通过计算似然函数的一阶 偏导数和信息矩阵,取两者的乘积作为最终的统计量。
这三种方法中,似然比检验是最可靠,也是最常用的一种变量筛选方法。在变量存在共线性时,Wald检验结果不可靠。另 外,实际应用是以上三种方法,都可以采用向前或者向后逐步的方式进行变量筛选。
另外在逻辑回归模型里,我们需要使得自变量和因变量的对数存在线性关系。如果发现实际的变量不符合,可以通过筛选 变量,变量转换等方式进行调整。另外变量转换也可以避免异常值对结果造成偏差。
前面提到,逻辑回归的模型参数估计通常采用的是最大似然函数法,因此理论上需要有一定量的样本才能采用这种方法, 否则检验公式就是不合理的。另外也需要注意的是,逻辑回归的模型无法解决多重共线性的问题,因此在输入变量前,对 变量进行检验和清洗是非常必要的。 得到模型后,我们可以通过混淆矩阵和ROC曲线来评判模型的效果。
灵敏度指的是模型“击中”的概率,也就是对于实际发生(取值为1)的样本,模型预测为1的概率。对应上图的公式为 A/(A+B)。
特异度指的是模型“正确否定”的概率,也就是说对于实际没发生(取值为0)的样本,模型预测为0的概率。对应上图 的公式为D/(C+D)。
因此,可以看到不管是灵敏度还是特异度,都是越高,说明我们的模型越有效。在实际应用中,由于逻辑回归模型计算 的结果其实是一个相对可能性p,因此我们可以根据实际情况调整判断取值为1的p的标准。更有侧重性地提高灵敏度或 者特异度。
3.ROC曲线
除了使用混淆矩阵,我们还可以通过ROC曲线的方式来图形化地判断模型效果。
ROC曲线也是基于灵敏度和特异度来进行判断的。曲线下面积AUC 指的是ROC曲线、底线和右侧线围成的面积。ROC曲线的面积一般 在0.5-1之间。这个数值越接近1,表明模型预测能力越强。当AUC 在0.7-0.9时,我们认为模型有较高的判断作用。而AUC接近0.5的 时候,我们人为这个模型是无效的。
在实际业务中,我们一般利用二分类逻辑回归作为筛选目标客户的 主要手段。不管是识别明星客户、流失客户,甚至是可能存在违约 或者欺诈行为的客户,都可以采用这种方法。
1. 某客户为欺诈的概率为0.4,则优势odds为( )?
A. 0.4
B .2 / 3
C. 3 / 2
D. 0.6
答案:B 解析:该题考核了二分类变量分析的基础知识。Odds的定义是显性结果的概率比上非显性结果的概率,因此为0.4 / 0.6,等 于2 / 3。
2. 建立逻辑回归时,为什么有时候需要对连续变量进行分箱处理?
A. 避免变量的共线性
B. 捕获原始连续变量和被解释变量之间非线性关系
C. 避免异常值影响
D. 修正残差非正态分布
答案:BC 解析:如果发现解释变量与反应变量之间相关,但又不呈现线性关系时,往往会对解释变量进行分箱,同时分箱也能够消除极端值。 因此选BC。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21