
CDA考试教材 https://www.cdaglobal.com/article/475.html
CDA模拟题库 https://www.cdaglobal.com/article/473.html
76.下表是一个购物篮,假定支持度阈值为40%,其中__(A D)__是频繁闭项集。
TID 项
1 abc
2 abcd
3 bce
4 acde
5 de
A、abc
B、ad
C、cd
D、de
77.Apriori算法的计算复杂度受__(ABCD)__影响。
A、支持度阀值
B、项数(维度)
C、事务数
D、事务平均宽度
78. 我们可以用哪种方式来避免决策树过度拟合 (Overfitting)的问题? (AB)
A、利用修剪法来限制树的深度
B、利用盆栽法规定每个节点下的最小的记录数目
C、利用逐步回归法来删除部分数据
D、目前并无适合的方法来处理这问题
79.以下属于分类器评价或比较尺度的有: (ACD)
A、预测准确度
B、召回率
C、模型描述的简洁度
D、计算复杂度
80.在评价不平衡类问题分类的度量方法有如下几种:(ABCD)
A、F1度量
B、召回率(recall)
C、精度(precision)
D、真正率(ture positive rate,TPR)
81.贝叶斯信念网络(BBN)有如下哪些特点:(AB)
A、构造网络费时费力
B、对模型的过分问题非常鲁棒
C、贝叶斯网络不适合处理不完整的数据
D、网络结构确定后,添加变量相当麻烦
82.如下哪些不是最近邻分类器的特点: (C)
A、它使用具体的训练实例进行预测,不必维护源自数据的模型
B、分类一个测试样例开销很大
C、最近邻分类器基于全局信息进行预测
D、可以生产任意形状的决策边界
83.如下那些不是基于规则分类器的特点:(AC)
A、规则集的表达能力远不如决策树好
B、基于规则的分类器都对属性空间进行直线划分,并将类指派到每个划分
C、无法被用来产生更易于解释的描述性模型
D、非常适合处理类分布不平衡的数据集
84.以下属于聚类算法的是( ABD )。
A、K均值
B、DBSCAN
C、Apriori
D、Jarvis-Patrick(JP)
85.( CD )都属于簇有效性的监督度量。
A、轮廓系数
B、共性分类相关系数
C、熵
D、F度量
86. 下列对ID3算法的描述,何者为真?(A, B, D)
A、每个节点的分支度都不相同
B、使用Information Gain作为节点分割的依据
C、可以处理数值型态的字段
D、无法处理空值的字段
87.( ABCD )这些数据特性都是对聚类分析具有很强影响的。
A、高维性
B、规模
C、稀疏性
D、噪声和离群点
88.在聚类分析当中,( AD )等技术可以处理任意形状的簇。
A、MIN(单链)
B、MAX(全链)
C、组平均
D、Chameleon
89.( AB )都属于分裂的层次聚类算法。
A、二分K均值
B、MST
C、Chameleon
D、组平均
90.下列哪种算法可同时用来做分类以及预测数值?(A, B)
A、Neural Network
B、Decision Tree
C、Logistic Regression
D、Linear Regression
三、内容相关题
(一)、根据相同的背景材料回答若干道题目,每道题的答案个数不固定。下列各题A)、B)、C)、D)四个选项中,每题至少有一个选项是正确的,多选或少选,均不能得分。
I、下图为类神经元的示意图,请回答1至3题:
1、【答案(A)】
请问虚线的部分为?
A、类神经元
B、 键结值(Weight)
C、阀值(Bias)
D、激发函数(Activation Function)
2、【答案(D)】
请问请问( )为?
A、类神经元
B、键结值(Weight)
C、阀值(Bias)
D、激发函数(Activation Function)
3、【答案(B)】
请问W1, W2, …, Wm为?
A、类神经元
B、键结值(Weight)
C、阀值(Bias)
D、激发函数(Activation Function)
II、根据下表的混乱矩阵(Confusion Matrix),回答4至5题:
4、【答案(A)】
对于属性值YES的响应率(Precision)应如何计算?
A. B. C. D.
5、【答案(B)】
对于属性值YES的捕捉率(Recall)应如何计算?
A. B. C. D.
(二)、6-10题略
四、案例操作题
带数据,数据请见***
(一)、根据相同的背景材料和数据回答若干道题目,每道题的答案个数不固定。在做题过程中需要使用统计软件进行相应的操作。提供SAS、SPSS和CSV三种格式的数据,统计软件不受限制。下列各题A)、B)、C)、D)四个选项中,每题至少有一个选项是正确的,多选或少选,均不能得分。
I、一家银行希望使用自有业务数据和外部征信局数据来构造信用评分模型。该数据保存在Credit这张表中。其变量描述如下:
分析过程需要使用软件进行,可以使用任何软件完成以下题目:
1、 (AB)
以下哪个变量是分类变量
A. TARGET
B. BanruptcyInd
C. InqFinanceCnt24
D. TLBadDerogCnt
2、 (B)
这些变量中,有多少个变量具有缺失值
A. 7
B. 11
C. 12
D. 27
3、(B)
InqCnt06的中位数是
A.0
B.2
C.40
D.3.11
4、(AC)
以下四个变量中,哪两个右偏严重
A. TLCnt24
B. TlOpenPct
C. TLSatCnt
D. TLSatPct
5、(B)
将数据按7:3的比例分为训练集和验证集,对有缺失值的变量使用中位数进行填补后,使用逐步回归法以Target为被解释变量构造逻辑回归,以下哪些变量的解释力度最强
A.TLBadCnt24
B.TLBalHCPct
C.TLCnt03
D.TLDel60Cnt24
6-10略
(二)、11-20题略
立刻扫码
看更多数据分析师认证试题
——学数据分析技能一定要了解的大厂入门券,CDA数据分析师认证证书!
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到教育部直属中国成人教育协会及大数据专业委员会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名>>点击报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ + Ⅱ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
Level Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
报考条件
CDA Level I >了解更多<
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
CDA Level II >了解更多<
▷ 报考条件:获得CDA Level Ⅰ认证证书;
▷ 考试时间:随报随考。
CDA Level III >了解更多<
▷ 报考条件:获得CDA Level Ⅱ认证证书;
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
(备注:数据分析相关工作不限行业,可涉及统计,数据分析,数据挖掘,数据库,数据管理,大数据架构等内容。)
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08