京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘:从现有的大量数据中,攫取不明显、之前未知、可能有用的知识
——William Frawley & Gregory Piatetsky Shapiro
市面上做数据挖掘的工具非常多,可谓是百花齐放百家争鸣,那么有什么理由让我们选择学习SAS 呢?
第一个理由,常用,名气大。这就好像同样是五百强企业,你说微软,大家会“哇!好厉害”,星星眼崇拜ing。然后你说某某集团(名字隐去,免得拉仇恨),大家会“恩?是民企么?”,瞬间自豪感就受到了挫败。SAS毫无疑问是数据分析届的巨无霸。
第二个理由,持续性强。SAS这个软件,本身其实是包罗万象的。现在大家喜欢说我会用SAS,其实都是托大了。就好像说我会R一样。SAS有很多模块,我们平时用的最多的是Base SAS, 最多加上SAS/Graph,SAS/Stat。做挖掘会用SAS EG和SAS EM。其他还有一大堆,我都记不住。所以一旦开始学
SAS,基本上等于你可以慢慢一直学下去。只要愿意,永远学不完。当然R也是如此,会有源源不断的包,保证你“活到老学到老”。
第三个理由,接口很好。SAS作为老牌的统计学软件,一直处于一个比较高的地位。当然,也一直有一个很高的价格。最神奇的是,他的收费方式是租金制,每年要收续租费。在一众“一次付费,终身免费”,甚至有的还“终身免费”升级的软件中,绝对是独树一帜。而如此有个性的软件,在接口上却还是很开放的,大部分主流数据库接口和主流数据类语言都可以兼容。比如,我们之前提到的SAS下面的SQL模块,绝对是已经学会SQL的小伙伴们的福音。
第四个理由,应用场景丰富。SAS几乎可以应用在一切的商业数据分析与挖掘场景,SAS的营业额即使是在金融危机时也只是稍有下滑,原因就是它服务的客户都是像银行,医药,电信,保险,政府等有钱人。
——CDA协会董雪婷
听说CDA2级也开设了SAS语言数据挖掘课程,本课程使用SAS BASE和SAS EM并行,重点探讨银行、电信、金融等行业的数据挖掘建模,涉及到风控、违约预测、客户关系管理等话题,教授的不仅仅是技术,而是思维和方法,感兴趣的小伙伴们快来学习吧!(如图是课程建模过程节选)
|
SAS专题 (6天) |
北京:2016年8月27-28,9月3-4,10-11日 上海:2016年8月13-14,20-21,27-28日 |
|
主题 |
以SAS为工具,讲解SAS软件中高级编程技术,并运用SAS进行数据挖掘流程化操作。 |
|
应用范围 |
《银行、证券等金融企业》《大型零售企业》《通信行业》《医疗行业》 |
|
软件技术 |
《SAS基础编程》《SAS数据管理》《SAS编程进阶》《SAS与SQL》《SAS宏语言》《程序优化》 |
|
算法理论 |
|
|
案例操作 |
【数据驱动的风险管理】【信用卡违约预测模型案例流程】【信用评分模型】【电信客户流失预警】 |
报名流程
1. 在线填写报名信息
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27