
《数据分析专项练习题库》
《CDA数据分析认证考试模拟题库》
《企业数据分析面试题库》
75.利用Apriori算法计算频繁项集可以有效降低计算频繁集的时间复杂度。在以下的购物篮中产生支持度不小于3的候选3-项集,在候选2-项集中需要剪枝的是(BD)
ID 项集
1 面包、牛奶
2 面包、尿布、啤酒、鸡蛋
3 牛奶、尿布、啤酒、可乐
4 面包、牛奶、尿布、啤酒
5 面包、牛奶、尿布、可乐
A、啤酒、尿布
B、啤酒、面包
C、面包、尿布
D、啤酒、牛奶
76.下表是一个购物篮,假定支持度阈值为40%,其中__(A D)__是频繁闭项集。
TID 项
1 abc
2 abcd
3 bce
4 acde
5 de
A、abc
B、ad
C、cd
D、de
77.Apriori算法的计算复杂度受__(ABCD)__影响。
A、支持度阀值
B、项数(维度)
C、事务数
D、事务平均宽度
78. 我们可以用哪种方式来避免决策树过度拟合 (Overfitting)的问题? (AB)
A、利用修剪法来限制树的深度
B、利用盆栽法规定每个节点下的最小的记录数目
C、利用逐步回归法来删除部分数据
D、目前并无适合的方法来处理这问题
79.以下属于分类器评价或比较尺度的有: (ACD)
A、预测准确度
B、召回率
C、模型描述的简洁度
D、计算复杂度
80.在评价不平衡类问题分类的度量方法有如下几种:(ABCD)
A、F1度量
B、召回率(recall)
C、精度(precision)
D、真正率(ture positive rate,TPR)
81.贝叶斯信念网络(BBN)有如下哪些特点:(AB)
A、构造网络费时费力
B、对模型的过分问题非常鲁棒
C、贝叶斯网络不适合处理不完整的数据
D、网络结构确定后,添加变量相当麻烦
82.如下哪些不是最近邻分类器的特点: (C)
A、它使用具体的训练实例进行预测,不必维护源自数据的模型
B、分类一个测试样例开销很大
C、最近邻分类器基于全局信息进行预测
D、可以生产任意形状的决策边界
83.如下那些不是基于规则分类器的特点:(AC)
A、规则集的表达能力远不如决策树好
B、基于规则的分类器都对属性空间进行直线划分,并将类指派到每个划分
C、无法被用来产生更易于解释的描述性模型
D、非常适合处理类分布不平衡的数据集
84.以下属于聚类算法的是( ABD )。
A、K均值
B、DBSCAN
C、Apriori
D、Jarvis-Patrick(JP)
85.( CD )都属于簇有效性的监督度量。
A、轮廓系数
B、共性分类相关系数
C、熵
D、F度量
86. 下列对ID3算法的描述,何者为真?(A, B, D)
A、每个节点的分支度都不相同
B、使用Information Gain作为节点分割的依据
C、可以处理数值型态的字段
D、无法处理空值的字段
87.( ABCD )这些数据特性都是对聚类分析具有很强影响的。
A、高维性
B、规模
C、稀疏性
D、噪声和离群点
88.在聚类分析当中,( AD )等技术可以处理任意形状的簇。
A、MIN(单链)
B、MAX(全链)
C、组平均
D、Chameleon
89.( AB )都属于分裂的层次聚类算法。
A、二分K均值
B、MST
C、Chameleon
D、组平均
90.下列哪种算法可同时用来做分类以及预测数值?(A, B)
A、Neural Network
B、Decision Tree
C、Logistic Regression
D、Linear Regression
三、内容相关题
(一)、根据相同的背景材料回答若干道题目,每道题的答案个数不固定。下列各题A)、B)、C)、D)四个选项中,每题至少有一个选项是正确的,多选或少选,均不能得分。
I、下图为类神经元的示意图,请回答1至3题:
1、【答案(A)】
请问虚线的部分为?
A、类神经元
B、 键结值(Weight)
C、阀值(Bias)
D、激发函数(Activation Function)
2、【答案(D)】
请问请问( )为?
A、类神经元
B、键结值(Weight)
C、阀值(Bias)
D、激发函数(Activation Function)
3、【答案(B)】
请问W1, W2, …, Wm为?
A、类神经元
B、键结值(Weight)
C、阀值(Bias)
D、激发函数(Activation Function)
II、根据下表的混乱矩阵(Confusion Matrix),回答4至5题:
4、【答案(A)】
对于属性值YES的响应率(Precision)应如何计算?
A. B. C. D.
5、【答案(B)】
对于属性值YES的捕捉率(Recall)应如何计算?
A. B. C. D.
(二)、6-10题略
四、案例操作题
带数据,数据请见***
(一)、根据相同的背景材料和数据回答若干道题目,每道题的答案个数不固定。在做题过程中需要使用统计软件进行相应的操作。提供SAS、SPSS和CSV三种格式的数据,统计软件不受限制。下列各题A)、B)、C)、D)四个选项中,每题至少有一个选项是正确的,多选或少选,均不能得分。
I、一家银行希望使用自有业务数据和外部征信局数据来构造信用评分模型。该数据保存在Credit这张表中。其变量描述如下:
分析过程需要使用软件进行,可以使用任何软件完成以下题目:
1、 (AB)
以下哪个变量是分类变量
A. TARGET
B. BanruptcyInd
C. InqFinanceCnt24
D. TLBadDerogCnt
2、 (B)
这些变量中,有多少个变量具有缺失值
A. 7
B. 11
C. 12
D. 27
3、(B)
InqCnt06的中位数是
A.0
B.2
C.40
D.3.11
4、(AC)
以下四个变量中,哪两个右偏严重
A. TLCnt24
B. TlOpenPct
C. TLSatCnt
D. TLSatPct
5、(B)
将数据按7:3的比例分为训练集和验证集,对有缺失值的变量使用中位数进行填补后,使用逐步回归法以Target为被解释变量构造逻辑回归,以下哪些变量的解释力度最强
A.TLBadCnt24
B.TLBalHCPct
C.TLCnt03
D.TLDel60Cnt24
6-10略
(二)、11-20题略
立刻扫码
看更多数据分析师认证试题
——学数据分析技能一定要了解的大厂入门券,CDA数据分析师认证证书!
CDA(数据分析师认证),与CFA相似,由国际范围内数据科学领域行业专家、学者及知名企业共同制定并修订更新,迅速发展成行业内长期而稳定的全球大数据及数据分析人才标准,具有专业化、科学化、国际化、系统化等特性。
同时,CDA全栈考试布局和认证体系已得到社会认可,并由为IBM、华为等提供全球认证服务的Pearson VUE面向全球提供灵活的考试服务。
报名方式
登录CDA认证考试官网注册报名>>点击报名
报名费用
Level Ⅰ:1200 RMB
Level Ⅱ:1700 RMB
Level Ⅲ:2000 RMB
考试地点
Level Ⅰ + Level Ⅱ:中国区30+省市,70+城市,250+考场,考生可就近考场预约考试 >看看我所在的地哪里报名<
Level Ⅲ:中国区30所城市,北京/上海/天津/重庆/成都/深圳/广州/济南/南京/杭州/苏州/福州/太原/武汉/长沙/西安/贵阳/郑州/南宁/昆明/乌鲁木齐/沈阳/哈尔滨/合肥/石家庄/呼和浩特/南昌/长春/大连/兰州>看看我所在的地哪里报名<
报考条件
CDA Level I >了解更多<
▷ 报考条件:无要求。
▷ 考试时间:随报随考。
CDA Level II >了解更多<
▷ 报考条件:获得 CDA Level Ⅰ 认证证书;
▷ 考试时间:随报随考。
CDA Level III >了解更多<
▷ 获得CDA Level Ⅱ 认证证书;
▷ 考试时间:
一年四届 3月、6月、9月、12月的最后一个周六。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25