在过去的几年里,机器学习在许多领域取得了突破性进展。然而,许多人仍然认为构建和训练机器学习模型需要大量的编程技能和复杂的工具。但是,你可能会惊讶地发现,在使用SQL(结构化查询语言)这种广泛应用于 ...
2023-10-11前言 CDA数据分析师职业道德和行为准则是基于 CDA价值观(开放、创新、分享)基础上,对各行业数据科学从业者制定的职业道德操守与专业行为规范。 自21世纪以来,技术更替驱动企业变革,科技发展改善人类生 ...
2023-10-11近十年来,顺应数字化趋势浪潮,CDA数据分析师秉持“专业性、前沿性、科学性”的定位,致力于推广数字化技能普及,推进数字化企业转型,推动数字化人才教育,借此契机联合斯坦福大学(StanfordUniversity)、Linke ...
2023-10-11数据分析师考试用书是数据分析人员备考重要的资料,那么在哪里购买这些用书呢?以下是一些可以考虑的选项。 一、线下实体书店 在大城市中,很多商业区都有大型的连锁书店,例如当当书店、京东书店等。这 ...
2023-10-09随着数据大爆炸的时代来临,数据分析师的需求量也越来越大。想要在这个领域中有所突破,提高自己的工资待遇,需要具备哪些技能和知识呢? 学习数据分析基础知识 作为一名数据分析师,掌握基本的数据 ...
2023-10-09自学数据分析:掌握技能、实践与持续学习的路径 一、自学数据分析的意义和好处 随着数据在各行各业的决策作用越来越明显,数据分析师已成为热门职业。自学数据分析,不仅可以提升个人的技能,还能为 ...
2023-10-09数据分析师应该学习哪些技术? 技术1:数据收集和清洗 数据收集和清洗是数据分析师的基础技能。数据收集涉及到如何获取数据,而数据清洗则是处理不完整、不准确或重复的数据。数据分析师需要了解数 ...
2023-10-09一、引言 随着信息化和数字化的高速发展,数据已经成为企业发展的重要资产。数据分析师作为专业的数据处理和分析人员,在企业决策中扮演着越来越重要的角色。越来越多的人开始关注数据分析,想要成为数据分 ...
2023-10-09随着大数据时代的到来,数据分析已经成为各个行业不可或缺的一部分。数据分析师是利用数据分析和统计方法收集、分析和解释数据来帮助企业做出决策。那么,一个合格的数据分析师需要具备哪些知识呢? 1.数学 ...
2023-10-09如何在3个月内,成为一名合格的数据分析师 数据分析+销售、数据分析+市场、数据分析+产品、数据分析+运营...随着行业发展和技术落地,数据分析已经与越来越多的行业进行结合。培养数据思维、掌握数据分析技术 ...
2023-10-09数据分析行业正在迅速发展,成为各行业的重要支撑。随着大数据时代的到来,数据分析技能已经成为企业和组织中必不可少的技能之一。数据分析师通过对数据的收集、整理、分析和解释,为企业和组织的决策提供有力支持 ...
2023-10-09数据分析是当前较为热门的职业领域之一,因此市场上有许多人试图成为这个领域的专家。但是,要想在这个行业中脱颖而出,必须具备一定的技能、经验和教育背景。本文将介绍数据分析师需具备的主要要求。 一、 ...
2023-10-09数据分析师是现代商业中非常重要的一部分,他们需要具备多种统计学知识才能从数据中得出正确的结论并指导商业决策。下面是数据分析师需要学习的一些统计学知识。 一、概率论基础 概率论是统计学的基础, ...
2023-10-09数据分析师需要学习哪些数学知识? 一、统计学 统计学是数据分析的基础,它为数据分析提供了数学基础和统计分析方法。统计学包括描述性统计和推论性统计两个部分。描述性统计用于总结和概括数据,推 ...
2023-10-09如何选择一本好的数据分析师教材? 一、了解自己的水平和需求 确定自己的职业阶段:对于初学者,重点需要掌握数据基本概念、数据获取、数据清洗和预处理等方面的知识;对于高级数据分析师,还需要掌 ...
2023-10-09在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09