京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:两个独立样本的非参数检验
在医学类研究中,经常会遇到治疗效果无法量化,但需要比较不同治疗方法优劣的需求。例如,比较止痛药的效果,疼痛程度无法准确量化,只能用主观打分来描述;理疗复健方法的优劣也无法量化,只能通过病人的情况粗略划分成卧床,部分自主等层次。当遇到这样无法量化数据的比较要求时,应该如何进行比较呢?两个样本的非参数检验是合适的分析方法。下面将介绍两个独立样本的非参数检验方法。
两个独立样本的非参数检验
单个样本的非参数检验对比的是样本分布与已知分布,从而得出随机样本所代表的总体是否服从已知分布。两独立样本的非参数检验是对两个独立样本的分布情况直接进行对比,目的是获得关于两总体分布状况差异大小的信息。这与单个样本假设检验和两个样本假设检验是一个套路。
SPSS提供了4种检验方法:Mann-Whitney U检验(曼-惠特尼U检验)、K-S检验、Wald-Wolfowitz检验(随机序列检验)和Moses极端反应检验。它们的原假设都是两个样本来自的总体分布没有显著性差异,只不过它们的分析方法不同。
Mann-Whitney U检验
Mann-Whitney U检验又称Mann-Whitney秩和检验,可用于对两总体分布的比例判断。其原假设为:两个独立样本来自的两个总体的分布无显著差异。Mann-Whitney U检验通过对两组样本平均秩的研究来实现判断。
Mann-Whitney U检验原理:将两个样本混合后按升序排列,得到每个样本值的秩(排名),然后分别求得两组样本的平均秩,并对这两个平均秩进行比较。如果两个总体分布无显著差异,其秩应该差别不大,从而两组样本的平均秩差别较小;反之,若两总体差异显著,则二者的平均秩会有较大差异。此外,Mann-Whitney U检验还要计算样本A的秩大于样本B的秩的个数U1,以及样本B的秩优于A的秩的个数U2,如果总体分布无显著差异,则两者应该接近;反之,若两总体差异显著,则二者的平均秩会有较大差异。
两独立样本K-S检验
检验原理:首先将两独立样本的数据混合并按升序排列,然后分布计算两个独立样本秩的累计频率,并求得两个累计频率的差值序列数据以获得D统计量。SPSS将自动计算D统计量的概率P值,如果P值大于显著性水平,则接受原假设;反之,则拒绝原假设,即两个样本来自的总体分布差异显著。
两个独立样本Wald-Wolfowitz检验
将两组样本混合并升序排列。同时,两组样本的每个观测值对应的样本组标志值序列也将随之重新排序,求出此游程。如果所得游程数较小,说明两总体的分布差异较大;反之,则不存在显著性差异。同时SPSS将据此自动计算相伴概率P值,如果P值大于显著性水平临界值,则接受原假设;反之则拒绝原假设,即两个样本来自的总体分布差异显著。
两独立样本Moses极端反应检验
原理为:将一组样本作为控制样本;另一组作为比较样本。一般按升序排列的第一个值定义控制组,第二个值定义比较组。以控制组作为参照,检验比较组相对于控制组是否出现极端反应。为此,将两组样本混合并升序排列,求得控制样本最高秩次和最低秩次之间包含的观测值个数,即跨度,以及去掉两个极端值后的截头跨度。如果跨度和截头跨度都很小,说明比较样本可能存在极端反应,两总体的分布差异显著;如果比较样本没有出现极端反应,则两总体分布无显著差异。
范例分析
现在由一份运用药物治疗和物理治疗方法对中风患者治疗结果的数据,治疗结果被分成5各层次:正常、可以自主活动、部分肢体可以自主活动、卧床和无自理能力;总共记录了100位患者的治疗效果,需要分析两种治疗方法的结果是否有显著性差异。

分析步骤
1、选择菜单【分析】-【非参数检验】-【旧对话框】-【2个独立样本】,在跳出的对话框中,做如下操作,然后点击确定。
2、或者也可以选择【分析】-【非参数检验】-【独立样本】,跳出如下对话框:
在字段页将生活行为能力选为检验字段,将治疗组选为组;在设置页选中所有4种两个样本的非参数检验方法。最后点击运行。
结果分析
两种操作方式的计算结果是一致的,由于第二种操作的显示结果是综合显示,所以选取第二种操作的显示结果进行讲解。
从结果可知;K-S检验和Wald-Wolfowitz游程检验的结果是接受原假设,即两种治疗方法的效果没有显著性差异;Moses检验和Mann-Whitney U检验的结果是拒绝原假设,即两种治疗方法的效果有显著性差异;所以,不同的检验方法可能会有不同的结论,这也说明了非参数检验是一种近似的检验方法,提示我们一定要根据数据的性质和检验方法的侧重点合理的选择检验方法。
可以对比不同的检验方法原理,Mann-Whitney U检验常用判别两独立样本所属的总体是否具有相同分布,Moses检验和K-S检验主要用于检验两个样本是否来自相同总体,所以本题中,建议选择Mann-Whitney U检验的分析结果,即两种治疗方法的治疗效果有显著性差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05