SPSS分析技术:两个独立样本的非参数检验
在医学类研究中,经常会遇到治疗效果无法量化,但需要比较不同治疗方法优劣的需求。例如,比较止痛药的效果,疼痛程度无法准确量化,只能用主观打分来描述;理疗复健方法的优劣也无法量化,只能通过病人的情况粗略划分成卧床,部分自主等层次。当遇到这样无法量化数据的比较要求时,应该如何进行比较呢?两个样本的非参数检验是合适的分析方法。下面将介绍两个独立样本的非参数检验方法。
两个独立样本的非参数检验
单个样本的非参数检验对比的是样本分布与已知分布,从而得出随机样本所代表的总体是否服从已知分布。两独立样本的非参数检验是对两个独立样本的分布情况直接进行对比,目的是获得关于两总体分布状况差异大小的信息。这与单个样本假设检验和两个样本假设检验是一个套路。
SPSS提供了4种检验方法:Mann-Whitney U检验(曼-惠特尼U检验)、K-S检验、Wald-Wolfowitz检验(随机序列检验)和Moses极端反应检验。它们的原假设都是两个样本来自的总体分布没有显著性差异,只不过它们的分析方法不同。
Mann-Whitney U检验
Mann-Whitney U检验又称Mann-Whitney秩和检验,可用于对两总体分布的比例判断。其原假设为:两个独立样本来自的两个总体的分布无显著差异。Mann-Whitney U检验通过对两组样本平均秩的研究来实现判断。
Mann-Whitney U检验原理:将两个样本混合后按升序排列,得到每个样本值的秩(排名),然后分别求得两组样本的平均秩,并对这两个平均秩进行比较。如果两个总体分布无显著差异,其秩应该差别不大,从而两组样本的平均秩差别较小;反之,若两总体差异显著,则二者的平均秩会有较大差异。此外,Mann-Whitney U检验还要计算样本A的秩大于样本B的秩的个数U1,以及样本B的秩优于A的秩的个数U2,如果总体分布无显著差异,则两者应该接近;反之,若两总体差异显著,则二者的平均秩会有较大差异。
两独立样本K-S检验
检验原理:首先将两独立样本的数据混合并按升序排列,然后分布计算两个独立样本秩的累计频率,并求得两个累计频率的差值序列数据以获得D统计量。SPSS将自动计算D统计量的概率P值,如果P值大于显著性水平,则接受原假设;反之,则拒绝原假设,即两个样本来自的总体分布差异显著。
两个独立样本Wald-Wolfowitz检验
将两组样本混合并升序排列。同时,两组样本的每个观测值对应的样本组标志值序列也将随之重新排序,求出此游程。如果所得游程数较小,说明两总体的分布差异较大;反之,则不存在显著性差异。同时SPSS将据此自动计算相伴概率P值,如果P值大于显著性水平临界值,则接受原假设;反之则拒绝原假设,即两个样本来自的总体分布差异显著。
两独立样本Moses极端反应检验
原理为:将一组样本作为控制样本;另一组作为比较样本。一般按升序排列的第一个值定义控制组,第二个值定义比较组。以控制组作为参照,检验比较组相对于控制组是否出现极端反应。为此,将两组样本混合并升序排列,求得控制样本最高秩次和最低秩次之间包含的观测值个数,即跨度,以及去掉两个极端值后的截头跨度。如果跨度和截头跨度都很小,说明比较样本可能存在极端反应,两总体的分布差异显著;如果比较样本没有出现极端反应,则两总体分布无显著差异。
范例分析
现在由一份运用药物治疗和物理治疗方法对中风患者治疗结果的数据,治疗结果被分成5各层次:正常、可以自主活动、部分肢体可以自主活动、卧床和无自理能力;总共记录了100位患者的治疗效果,需要分析两种治疗方法的结果是否有显著性差异。
分析步骤
1、选择菜单【分析】-【非参数检验】-【旧对话框】-【2个独立样本】,在跳出的对话框中,做如下操作,然后点击确定。
2、或者也可以选择【分析】-【非参数检验】-【独立样本】,跳出如下对话框:
在字段页将生活行为能力选为检验字段,将治疗组选为组;在设置页选中所有4种两个样本的非参数检验方法。最后点击运行。
结果分析
两种操作方式的计算结果是一致的,由于第二种操作的显示结果是综合显示,所以选取第二种操作的显示结果进行讲解。
从结果可知;K-S检验和Wald-Wolfowitz游程检验的结果是接受原假设,即两种治疗方法的效果没有显著性差异;Moses检验和Mann-Whitney U检验的结果是拒绝原假设,即两种治疗方法的效果有显著性差异;所以,不同的检验方法可能会有不同的结论,这也说明了非参数检验是一种近似的检验方法,提示我们一定要根据数据的性质和检验方法的侧重点合理的选择检验方法。
可以对比不同的检验方法原理,Mann-Whitney U检验常用判别两独立样本所属的总体是否具有相同分布,Moses检验和K-S检验主要用于检验两个样本是否来自相同总体,所以本题中,建议选择Mann-Whitney U检验的分析结果,即两种治疗方法的治疗效果有显著性差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12