
R语言的一个小范例:数值模拟和绘图_数据分析师培训
下午上课,要给经济工程专业的本科生简要介绍一下用于统计分析和绘图的R语言。考虑到他们所在的年级并没有系统的学完统计学和计量经济学,打算不从回归分析入手,先教他们对R的基本操作有个了解。写了如下这段代码,准备课上带同学们做一下。顺便发到网上,供大家参考。
背景:
假定是一个由
决定的量,满足关系
问在
的取值空间内,
值的走势如何,以及最大值出现在什么地方,并绘图说明。
talk is cheap. show me the code (废话少说,放码过来)
一点一点写,并适当做说明
qiu <- function(alpha){(alpha / (1-alpha))^{-alpha}}
这段代码的意思是,定义一个名为qiu的function,输入值alpha之后,会自动求得对应的值。比如
> qiu(0.67)
[1] 0.622206
现在我们来搞alpha。
x <- seq(0.001,0.99, by=0.001)
定义一个数组x,取值从0.01开始,每次增加0.001单位,直到0.999。然后看看x这个数组的情况吧
x
length(x)
结果就不贴出来了。现在,把x的值交给qiu来处理,生成的一系列值,我们定义为y。
y <- qiu(x)
画个草图来看看分布情况如何
plot(y~x)
显然,随着x从0到1, y并不是单调变化的:先增大,后减小。那么,y的最高值是多少?对应的x值是多大?
max(y)
x[which.max(y)]
第一行告诉你y的最大值1.3211
第二行的which.max(y)告诉你当y值最大时,所对应的编号是218。把218带入x中,找到对应的x的值:x[218]=0.218
schx=c(x[which.max(y)])
schy=c(max(y))
分别将y值最大时的x和y值,定义为schx和schy,供下文使用。
重新画张图,前面那张太丑了
dev.off()
plot(y~x, ylim=c(0,1.5), xlim=c(0,1), type="l", ylab=expression(beta), xlab=expression(alpha))
第一行dev.off()告诉R的绘图程序,关闭此前的图。第二行的ylim和xlim定义x和y轴的取值范围。type是告诉plot程序,散点图以line的形式呈现。ylab和xlab是x和y轴的名称:由于我们需要使用希腊字母,因此需要使用expression(alpha)和expression(beta)来打出与
。
比原来那张图看着帅一些了是吧。继续调整。
par(new=TRUE)
plot(max(y)~x[which.max(y)], pch=2, lty=3, col="red",ylim=c(0,1.5), xlim=c(0,1), ylab="", xlab="")
第一行告诉绘图程序,我下面要在原有那张图的基础上,继续添加内容,不要覆盖原图。
第二行中,把y最大值时的点标出来,pch表示这个点的形状(1是空心圆,2是空心三角,等等,你们自己试试看从1到20吧)。col="red",将这个点画成红色。ylab和xlab设为空,ylim和xlim和上文的值相同,使得两张图x轴、y轴重合。
差不多行了。如果你想继续和我一样骚包一点的话,跟我向下继续设置。
text(schx, schy-0.2, substitute(paste("(", xx ,", ", yy, ")"), list(xx=schx,yy=schy)))
这行代码的作用是,在途中加入一段文字。语法text(a,b,c)的意思是,a代表横坐标的位置,b代表纵坐标的位置,c代表所需要加入的语言。a和b加在一起,告诉plot()需要把一段文字c放在(a,b)这个地方。
c需要做进一步的说明。"(", 以及 ")", 表示这其中是有纯文字部分的,plot()直接把它们打出来即可(注意逗号是要保留的)。加在两个小括号中间的是xx和yy,这是两个值。
substitute(paste(),list()):
substitute()中包括两部分,一部分是paste(),一部分是list()。paste告诉plot()要加入这段东西了,其中包括两个待赋值的xx和yy。list()为它们分别赋值。
看看效果吧。
看起来还可以。要是能把 这个式子也写上去就更完美了。
text(0.4, 0.5,
substitute(
paste(beta == (frac(alpha, 1-alpha))^{-alpha},
",",
"0<", alpha, "<1")
)
)
收工。这张图看起来还是有些难看。。。。不过基本信息都已经有了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08