京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助力京津冀协同发展_数据分析师考试
2015年6月24日下午,大数据助力京津冀协同发展高峰论坛在北京文津国际酒店五层阳光厅举行。本次论坛由京津·高村科技创新园、清华大学数据科学研究院主办,清华大数据产业联合会承办,北京诺亚星云科技有限责任公司协办。天津市武清开发区总公司副总经理李富国、京津高村科技创新园副总经理杜瀛涛、副总经理孙浩、中国科学院科技政策与管理科学研究所研究员王铮、清华大学数据科学研究院执行副院长韩亦舜和大数据产业界相关代表等出席本次活动。本次高峰论坛由壳牌中国零售CIO徐斌主持。
“今天我们谈论的京津冀协同发展是一个大话题,我们的目标,不是完成疏散人口、挪出产业等单一任务,而是真正把京津冀这三地打造成适合人居的地方。这个目标只有用大数据的思想方法进行全面思考,才能够真正实现。比较北京和天津,武清算小的,但是已经可以明显感觉到这里具备了培养创新创业的土壤。世界这么大,创业可以到武清去看看;大城市发展的机会这么少,不妨到武清去找找。”清华大学数据科学研究院执行副院长韩亦舜精彩的致辞拉开了大数据助力京津冀协同发展高峰论坛的序幕。紧接着,武清区开发公司副总经理李富国在致辞中强调:“武清过去一直是一个农业县。配合着京津冀协同发展,武清渐渐形成电商、生物医药、高端制造、大数据等几大产业。京津冀协同发展,非首都功能开始向武清疏解。我们致力于打造一个良好的工作环境、生活环境给创业者们。希望年轻人、创业者到武清落地。”
壳牌中国零售CIO徐斌首先在演讲中表示,“互联网+”意味着更多的人利用移动互联网作为生活的组成部分。这对于传统企业发出了挑战:如何利用互联网技术重构核心竞争力。大数据就是所有技术中间最为核心的竞争力。互联网技术可以帮助传统企业更好地转型,但是技术只是工具,重要的是传统企业可以拥抱互联网思维:平等、开放、协作、共享。今天我们讨论的京津冀三地协同发展,也需要这样的思维。随后,银联智策副总经理呼延如生介绍了银联智策和清华大学数据科学研究院经济金融数据研究中心共同研发的“京津冀经济发展系列指数”,并解释道:“这些指数是基于银联卡交易数据计算出来的,最真实的反映了市场上的交易情况,从衣、食、住、行、用的百姓生活以及地产、金融、物流等十多个产业发展多维度全面分析,以支撑京津冀地区产业战略发展决策”。清华大数据产业联合会副秘书长邱冬晓通过演讲《大数据@京津冀》表达了他对于如何在京津冀和武清区落实大数据战略的看法,他说:“首先,要以大数据产业为核心。第二,要以生态链为抓手,从服务业入手,实现生态的双赢。第三,大力发展创新创业为引擎”。
中国科学院科技政策与管理科学研究所研究院王铮在谈到京津冀协同发展中的机遇与挑战时表示:“京津冀地区总面积21.6万平方公里,差不多等于英国的面积。英国有那么多产业、那么多发展,我们中国京津冀也足以放下这么多产业。协调京津翼发展需要金融业、研发业这两个枢纽。大数据挖掘、大数据分析就是研发产业。大数据是靠数据挖掘来支持的,所以我们武清要发展,不能只依靠大数据企业,还要把相应的数据挖掘、产业分支发展起来,而数据发展依赖于人才。”
随后,清华大学数据科学研究院执行副院长韩亦舜、天津觉明科技有限公司副总经理孟庆凯、京津高村科技创新园副总经理杜瀛涛、太平洋电信客服部产品经理范利军、百融金服市场总监张毅、创业魔法学院CEO陆伟,就“大数据助力京津冀协同发展”问题进行了圆桌讨论,进一步探讨了武清高村科技创新园在京津冀协同发展和产业转型升级中的优劣势和发展方向。
在最后的大数据企业SHOW环节中,山东蚁巡网络科技有限公司、数聚变、京东智能云、北京爱康泰科技有限责任公司、屏芯科技、海思力科技有限公司、找地儿、北京华康联创医疗有限公司、小象在线教育、易宝天创数据服务有限公司等10家大数据创新创业企业代表分别上台介绍了各自公司的大数据应用场景,活动圆满结束。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23