
大数据助力京津冀协同发展_数据分析师考试
2015年6月24日下午,大数据助力京津冀协同发展高峰论坛在北京文津国际酒店五层阳光厅举行。本次论坛由京津·高村科技创新园、清华大学数据科学研究院主办,清华大数据产业联合会承办,北京诺亚星云科技有限责任公司协办。天津市武清开发区总公司副总经理李富国、京津高村科技创新园副总经理杜瀛涛、副总经理孙浩、中国科学院科技政策与管理科学研究所研究员王铮、清华大学数据科学研究院执行副院长韩亦舜和大数据产业界相关代表等出席本次活动。本次高峰论坛由壳牌中国零售CIO徐斌主持。
“今天我们谈论的京津冀协同发展是一个大话题,我们的目标,不是完成疏散人口、挪出产业等单一任务,而是真正把京津冀这三地打造成适合人居的地方。这个目标只有用大数据的思想方法进行全面思考,才能够真正实现。比较北京和天津,武清算小的,但是已经可以明显感觉到这里具备了培养创新创业的土壤。世界这么大,创业可以到武清去看看;大城市发展的机会这么少,不妨到武清去找找。”清华大学数据科学研究院执行副院长韩亦舜精彩的致辞拉开了大数据助力京津冀协同发展高峰论坛的序幕。紧接着,武清区开发公司副总经理李富国在致辞中强调:“武清过去一直是一个农业县。配合着京津冀协同发展,武清渐渐形成电商、生物医药、高端制造、大数据等几大产业。京津冀协同发展,非首都功能开始向武清疏解。我们致力于打造一个良好的工作环境、生活环境给创业者们。希望年轻人、创业者到武清落地。”
壳牌中国零售CIO徐斌首先在演讲中表示,“互联网+”意味着更多的人利用移动互联网作为生活的组成部分。这对于传统企业发出了挑战:如何利用互联网技术重构核心竞争力。大数据就是所有技术中间最为核心的竞争力。互联网技术可以帮助传统企业更好地转型,但是技术只是工具,重要的是传统企业可以拥抱互联网思维:平等、开放、协作、共享。今天我们讨论的京津冀三地协同发展,也需要这样的思维。随后,银联智策副总经理呼延如生介绍了银联智策和清华大学数据科学研究院经济金融数据研究中心共同研发的“京津冀经济发展系列指数”,并解释道:“这些指数是基于银联卡交易数据计算出来的,最真实的反映了市场上的交易情况,从衣、食、住、行、用的百姓生活以及地产、金融、物流等十多个产业发展多维度全面分析,以支撑京津冀地区产业战略发展决策”。清华大数据产业联合会副秘书长邱冬晓通过演讲《大数据@京津冀》表达了他对于如何在京津冀和武清区落实大数据战略的看法,他说:“首先,要以大数据产业为核心。第二,要以生态链为抓手,从服务业入手,实现生态的双赢。第三,大力发展创新创业为引擎”。
中国科学院科技政策与管理科学研究所研究院王铮在谈到京津冀协同发展中的机遇与挑战时表示:“京津冀地区总面积21.6万平方公里,差不多等于英国的面积。英国有那么多产业、那么多发展,我们中国京津冀也足以放下这么多产业。协调京津翼发展需要金融业、研发业这两个枢纽。大数据挖掘、大数据分析就是研发产业。大数据是靠数据挖掘来支持的,所以我们武清要发展,不能只依靠大数据企业,还要把相应的数据挖掘、产业分支发展起来,而数据发展依赖于人才。”
随后,清华大学数据科学研究院执行副院长韩亦舜、天津觉明科技有限公司副总经理孟庆凯、京津高村科技创新园副总经理杜瀛涛、太平洋电信客服部产品经理范利军、百融金服市场总监张毅、创业魔法学院CEO陆伟,就“大数据助力京津冀协同发展”问题进行了圆桌讨论,进一步探讨了武清高村科技创新园在京津冀协同发展和产业转型升级中的优劣势和发展方向。
在最后的大数据企业SHOW环节中,山东蚁巡网络科技有限公司、数聚变、京东智能云、北京爱康泰科技有限责任公司、屏芯科技、海思力科技有限公司、找地儿、北京华康联创医疗有限公司、小象在线教育、易宝天创数据服务有限公司等10家大数据创新创业企业代表分别上台介绍了各自公司的大数据应用场景,活动圆满结束。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19