
SPSS移动平均一点也不神秘_数据分析师考试
预测才是数据分析的真谛,通过历史数据,预测未来的各种可能性,针对预测的结果防范于未然。预测方法有很多种,包括定性以及定量方法。其中,时间序列预测,它不用过多考虑内部具体的、错综复杂的影响因素,是“历史重演”的惯性假设条件下,基于外部数据的对未来的估计。
什么是移动平均?
最简单,也是最常用的时间序列分析是移动平均法,任何周期的预测值都是过去几个周期观测值的平均值。要执行移动平均法,首先需要选择一个跨度,即每次移动平均的周期。例如,我们假设数据是每月的数据,跨度选择5个月,因此下个月的预测值是前5个月值得平均值。注意,跨度越大,预测序列就越平滑。SPSS统计分析工具提供了便捷的移动平均模型,今天一起来揭开它的神秘。
SPSS移动平均分析实例
数据“SPSS移动平均分析实例”,其中变量sales为某个公司1986-1997年间各个季度某商品的销售量数据,用移动平均法来预测1998年1季度销售额及98年2季度的销售额。
菜单操作步骤
(1)“转换”——“创建时间序列”
(2)将“销售量”移动至右侧框内,新的变量命名为:移动平均;
(3)函数选择:先前移动平均,跨度选择5;
(4)单击“更改”
备注:(此案例旨在说明SPSS移动平均的过程,跨度的大小不再考虑。)
此时,在数据集界面,我们可以看到,1998年1季度预测值为:4490.52,如果我们继续这个步骤来预测1998年2季度,由于1998年1季度并没有真实的观测值,一般在这种情况下,多采用相应的预测值代替,按照同样的方法,我们可以得到,1998年2季度的预测值为:4483.43。
如何来衡量移动平均的误差
最简单是采用平均绝对误差MAE,为n个预测值与观测值误差的平均值。通过计算新的变量,可轻松得到。本例跨度为5的情况下,其MAE为:569.5,可见该值较大,平均绝对误差比较大,移动平均的效果并不明显。
必须得强调的几点
(1)时间序列存在比较明显的季节性趋势时,不适于使用移动平均;
(2)时间序列存在比较明显的发展趋势时,不适于使用移动平均;
上面这个案例,从时间序列图上,可以看出,存在明显的趋势因素及季节性因素,综合而言,并不适用于使用移动平均,最后由较高的MAE也可以反映出这一点,因此在使用移动平均前需要重点观察序列的趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17