京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析架构中需要权衡的四个因素_数据分析师考试
通过提供对更广泛信息集的访问,大数据就可以为数据分析师和业务用户产生分析见解提供一臂之力。成功的大数据分析应用程序会揭示某些趋势和模式,以此来为决策制定提供更好的服务,并会指出新的创收机会和让企业领先于他们的商业竞争对手的方法。但首先,企业往往需要增强他们现有的IT基础设施建设以及数据管理流程以支持大数据架构的规模和复杂性。
Hadoop系统和NoSQL数据库已经成为管理大数据环境的重要工具。不过,在很多情况下,企业利用他们现有的数据仓库设施,或是一个新老混合的技术来对大数据流入他们的系统进行管理。
无论一个公司部署什么类型的大数据技术栈,有一些共通的因素必须加以考量,以保证为大数据分析工作提供一个有效的框架。在开始一个大数据项目之前,去审视项目所要承担的新数据需求的更大图景显得尤为关键。下面来让我们检视四个需要加以考量的因素。
数据准确性
数据质量问题对于BI和数据管理专业人士来说一定不陌生。很多BI和分析团队努力保证数据的有效性并说服业务使用人员去信任信息资产的准确性和可靠性。作为个性化分析库而得以广泛使用的电子表格或电子报表软件可以对数据中信任缺乏的问题加以弥补:在Excel中存储和操作分析数据的功能为支持自助分析能力创造了环境,但可能不会激发其他用户对结果的自信心。数据仓库与数据集成和数据质量工具一起,能够通过为管理BI和分析数据提供标准化流程来帮助树立信心。但是,由于不断增加的数据容量和更广泛多样的数据类型,特别是当涉及结构化和非结构化数据混合时,就会对一个大数据的实施增加难度系数。建立评估数据质量标准以及对它们进行升级以处理那些更大、更多样数据集,对于大数据实施的成功和分析框架的使用是至关重要的。
存储适用
数据仓储的一个核心要求是处理和存储大数据集的能力。但并不是所有数据仓库在这方面都满足要求。一些是针对复杂查询处理进行优化,而其他的则并非如此。并且在许多大数据应用程序中,相较于事务系统,由于添加了非结构化数据还有数据的创建和收集增速迅猛,用Hadoop和NoSQL技术增强数据仓库就成为必要。对于一个希望获取并分析大数据的组织来说,光有存储容量是不够的;而重要的部分在于将数据置于何处才是最佳的,这样数据就可以转化为有用信息并为数据科学家和其他用户所利用。
查询性能
大数据分析依赖于及时处理和查询复杂数据的能力。一个很好地例子就是:一家公司开发了一个数据仓库用来维护从能源使用计收集到的数据。在产品评估过程中,某供应商的系统有能力在15分钟内处理七百万条记录,而另一家则在相同时间内可以处理最高三十万条记录。能否识别正确的基础设施来支持快速的数据可用性和高性能查询就意味着成功还是失败。
稳定性
随着许多组织中数据量和数据种类的增长,大数据平台的建立需要有对未来的考量。必须提前考虑和求证正在进行评估的大数据技术是否能够进行扩展,以达到不断向前发展的需求所要求的级别。这便超出了存储容量的范畴,将性能也包含了进来,对那些从社交网络,传感器,系统日志文件以及其他非事务源获取数据作为其业务数据扩展的公司来说尤为如此。
分析多样而复杂的数据集需要一个健壮且富有弹性的大数据架构。在筹划项目时通过对这四个因素进行考量,组织可以确定他们是否已经拥有能够处理如此严苛大数据的分析程序亦或是需要额外的软硬件以及数据管理流程来达到他们的大数据目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14