电商的数据分析实例
导读:说到数据分析,大家可能就会想到回归,聚类什么的,不过对于电商的小伙伴来说,这些都太复杂了。而实际数据分析的时候,其实并不需要这么复杂的算法,大家需要的只是:
对比
细分
转化
分类
只要掌握了这四种思想,基本上已经可以应付日常的分析工作了。
对比思想
数据对比主要是横向和纵向两个角度,指标间的横向对比帮助我们认识预期值的合理性,而指标自身在时间维度上的对比,即我们"数据分析师"通常说的趋势分析。
以店铺的成交额分析为例:
纵向对比
我们可以把最近30天的成交额显示在坐标轴上,这样就可以很明显的看到最近的成交额是否达到了预期,当然我们也可以以周或者月(或者季度,年等等)为单位。
所有的分析其实都必须要考虑实际的场景,我们"数据分析师"看到今天的成交额比昨天大也许说明的问题还是很有限,因为今天和昨天的性质可能未必一样,例如今天可能是周六,或者恰好是节假日等等。所以我们在做纵向对比的时候,例如要判断今天(假设是周六)的成交额是否合理,除了看最近30天的趋势数据,我们还可以考虑:
最近10周的周六成交额趋势
如果今天恰好是一个节日,例如双十一,那么可以考虑和上一年的双十一做一个对比。(说明:因为间隔时间比较长,数据反映出来的意义可能比较有限)
横向对比
例如我们说,店铺这周的成交额上涨了10%,那我们是不是应该高兴呢?
当然应该高兴,不过这个上涨的背后是否隐含着什么危机呢?当然是有的,例如你的竞争对手们这周的成交额都上涨了20%!当你洋洋得意的时候,可能已经被竞争对手拉开距离了。
也就是说,我们对一个现象判断好不好,这是需要一个参照系的。在现在的电商时代,你完全有可能知道竞争对手的成交额上涨了多少的。
再举一个更常见的例子:
假如我在不同的地方(或者平台)开了很多家店铺,某商品的成交额在A店铺上涨了10%,那这个是否值得高兴?
这个显然未必,我们还要对比商品A在各家店铺的上涨情况,例如可以对比平均曲线。
细分思想
使用转化的思想,我们"数据分析师"已经基本可以判断一个指标(例如成交额)是否合理了。不过还仅仅知道是否合理是不够的,我们还需要知道问题所在,这时可以用上细分的思想了。通过细分的思想,我们可以对分析对象剥丝抽茧,逐步定位到问题点。细分的角度可以有很多,越细分越能准确描述问题。
例如,我们通过查看趋势,知道了这个月成交额下降了这个问题后,现在我们用细分的思想来找出问题的所在:
成交额细分
成交额 = 客单价 X 客户数
对比客单价和客户数的趋势,就可以判断出影响成交额变化的主要因素是什么,如果是客户数问题,我们则对客户数进行细分,如果是客单价问题,则对客单价进行细分。
客户数细分
客户数 = 新客户 + 老客户
老客户 = 二次成交客户 + 多次成交客户
一段时间内的新客户反映的是店铺的引流效果,而老客户反馈的是店铺的产品质量,服务质量和客户维护营销等。
对于店铺来说,促成二次成交都是非常重要的,特别是对于电商客户,因为对于电商,客户转移的成本比线下低很多。
客单价细分
客单价 = 成交价 X 人均成交数
人均成交数这是店铺一个非常值得关注的指标,它能最直接地反馈出店铺在服务质量和客户维护营销等方面的效果,如果该值过小表明店铺的客户流失率很大,应该重点关注。
成交价反馈的通常是导购的能力,促销活动的效果等,具体还可以对这个指标进行分解。
成交价细分
成交价 = 件单价 X 连带率
成交价的上升或者下跌,反映的问题可能很多,对其进行分解后就很明确了。
件单价的变化通常是有促销的力度,商品结构和消费结构(例如季节因素等)变化引起的。
连带率这个反馈的是店铺内导购的能力,或者促销手段(例如买一送一等)的效果,也是店铺管理人员重点要关注的指标。
细分思想其实就是不断用更小的量化指标去细分一个大的指标,从而达到定位问题的目的。
转化思想
细分的思想可以从纵向定位问题,但是单单细分是不够的。这些指标是从哪里来的,每一个步骤的转化率怎么样,哪一个步骤的转化不好,可以改善?这些通过转化率都可以分析出来。
例如我们"数据分析师"要分析本周的活跃客户数(有成交的客户数),那么我们就要分析这些活跃的客户数是从哪里来的,梳理一下可以简单分为以下4个步骤:
进入店铺的客户数 ==》浏览过商品的客户数 ==》下单的客户数 ==》交易成功的客户数
这里4个步骤就会有3个转化率,哪些步骤转化率比较高,哪些步骤转化率比较低,历史趋势怎么样,是否合理,是否有改进的空间等等。通过应用转化的思想,能够有效的指导和优化实际的运营工作。
分类思想
上面我们"数据分析师"已经介绍了对比,细分和转化三种实用的数据分析思想,现在我们还有再介绍一种非常实用的思想,那就是分类思想。
分类思想简单的说,就是把一些对象,按照某种规则,划分为若干个类别,然后分析各个类别的特征,并以此来指导我们的行动。
严格说,分类其实也是细分的一种,不过因为它比较重要,所以独自开来。
分类思想的应用很多,例如对客户的分类,我们可以用RFM分析模型,也可以用简单的利用某个指标的值(例如渠道标识,这样我们就可以分析到各个渠道客户的质量等)。基于这些客户的分类,我们就可以进行精准的客户营销了。
在电商或者零售业上,我们经常做的分类还有商品分类,经典的有按照品类分类,或者ABC分类,这些对于我们做商品运营都是非常重要的。
当然还有非常复杂的分类方法,例如聚类算法,不过这些不在我们的讨论范围内。对比,细分,转化和分类,其实都是很简单的数据分析思想,不过如果你掌握了,并且培养这样的意识,那一定会受益终身。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08