京公网安备 11010802034615号
经营许可证编号:京B2-20210330
日常生活工作中,处处都会与数据打交道,但你知道数据是会“说谎”的,即你看到的数据结果并不是事实。本文介绍一些常见的说谎场景以及如何避免。
一、图表欺骗
图表通常用来增强需要文字和数据的说服力,通过可视化的图表更容易让受众接受信息。但图表有时候会表现的不是数据的本质:
1.图表拉伸
如果没有特殊用途,通常图表的长(横轴)与高(纵轴)的比例为1:1到1:2之间,如果在这个范围之外,数据现实的结果会过于异常。比如:
2.坐标轴特殊处理
在很多场合下,如果两列数据的取值范围差异性过大,通常在显示时会取对数,这时原来柱状图间的巨大差异会被故意缩小。通常,严谨的分析师在讲解之前会进行告知。比如:
3.数据标准化
数据标准化也是一个让数据落在相同区间内常用的方法,常用Z标准化或0-1标准化,如果不提前告知,可能会误以为两列数据取值异常接近,不符合实际业务场景,比如:
隐秘层次:★★☆☆☆
破解方法:询问分析师的图表各个含义,了解基本图表查看常识。
二、数据处理欺骗
数据处理中的欺骗方法通常包括抽样方法欺骗、样本量不同、异常值处理欺骗等。
1.抽样方法欺骗
整体样本的维度,粒度和取数逻辑相同的情况下,不用的样本抽样规则会使数据看来更符合或不符合“预期”。比如在做用户挽回中,假如做的两次活动的抽样样本分别是最近6个月未购物和最近6个月未购物但有登陆行为的用户,不用做什么测试,基本上可以确定后者的挽回效果更佳。要识破这个“骗局”只需要询问数据取样方法即可,需要细到具体的SQL逻辑。
2.样本量不同
严格来说样本量不同并不一定是故意欺骗,实践中确实存在这种情况。(遇到这种情况可以用欠抽样和过抽样进行样本平衡)样本量不同分为两种情况:
样本量数量不同。比如要做效果差异对比,第一步是做效果比对,假如两个数据样本量分别是几千和几万的级别,可比性就很小。尤其是对于样本分布不均的情况下,数据结果可信度低。
样本主体不同。这是非常严重的数据引导错误,通常存在于为了达到某种结果而故意选择对结果有利的样本。比如做品类推广,一部分用户推广渠道为广告,另一部分是CPS可以遇见相同费用下后者的效果必然更好。
相同样本不同的客观环境。比如做站内用户体验分析,除了用随机A/B测试以外,其他所有测试方法都没有完全相同的客观环境,因此即使选的是相同样本,不同时间由于用户,网站本身等影响,可信度较低。
3.异常值处理欺骗
通常面对样本时需要做整体数据观察,以确认样本数量、均值、极值、方差、标准差以及数据范围等。其中的极值很可能是异常值,此时如何处理异常值会直接影响数据结果。比如某天的销售数据中,可能存在异常下单或行单,导致品类销售额和转化率异常高。如果忽视该情况,结论就是利好的,但实际并非如此。通常我们会把异常值拿出来,单独做文字说明,甚至会说明没有异常值下的真实情况。
隐秘层次:★★★☆☆
破解方法:在跟数据分析师沟通中,多询问他们在数据选取规则,处理方法上的方法,如果他们吞吞吐吐或答不上来,那很有可能是故意为之。同时,业务人员也要增强基本数据意识,不能被这种不可见的底层错误欺骗。
三、 意识上的欺骗
这种欺骗是等级最高也是最严重的欺骗和错误,通常存在于数据分析师在做数据之前就已经下结论,分析过程中只选取有利于证明其论断的方法和材料,因此会在从数据选择,处理,数据表现等各个方面进行事实上的扭曲,是严重的误导行为!数据分析师需要有中立的立场,客观的态度,任何有立场的分析师的结论都会失之偏颇。
隐秘层次:★★★★★
破解方法:在跟该分析师沟通中,查看其是否有明显立场或态度,如果有,那么该警惕;然后通过上面的方法逐一验证。
综上,当你遇到以下数据情形,就需要警惕数据的真实性了:
数据报告从来不注明数据出处,数据时间,数据取样规则,数据取得方法等。现在市场上很多报告都属于这一类。
数据报告在做市场调研中说明全样本共1000,其中北京可能只有100,基于这100个样本出来的结论显然不可信。事实上很多市场研究报告就是这样出来的。
数据报告中存在明显的观点,对于事物的分析只讲其优势或劣势,不全面也不客观。现在很多互联网分析师就是属于这类,大家注意辨别。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22