京公网安备 11010802034615号
经营许可证编号:京B2-20210330
你真的适合在数据科学领域工作吗_数据分析师考试
目前数据科学家或相关角色(如数据管理,统计师,数据分析师等)成为最抢手的职业之一。针对这一跨行业的趋势,一些顶尖大学已经开始致力于培养数据科学家。---cda数据分析师报名
在更多的机遇、薪酬、知名度以及商业领袖们对它重视的诱惑下,许多人开始朝着数据科学家的职业努力,但他们并没有深入地思考这个职位每天所需要承担的责任、需要的态度、在技术和商业技能上的平衡的能力。
对于有志成为数据科学家这个角色的人,这些能够挑战自我和职业抱负的人,我们希望能勾画出一个清晰的图像来说明这些人的特质。我最近同一个有着25年以上行业经验的人Paco Nathan聊起这个问题,他的坦诚的回应让我对这个问题的认识清楚了不少。
Anmol Rajpurohit: 数据科学家被称为第二十一世纪最性感的工作。你同意吗?你会给致力于从事数据科学的人们什么样的建议呢?
Paco Nathan:我不同意。没有多少人具备数据科学家这个角色所需要的知识广度,也没有多少人具备掌握这些技能必备的耐心和欲望。
先做一个自我测试吧
1、准备一个未知的数据集的分析和可视化,数据需求者们将看到你的成果后问一些关键问题,但你要准备好你满怀信心得出的结果受到一些量化的论证。
2、在25个字以内形容出损失函数(loss function)和(regularization term)正则化项,用几个例子做比较/对比,并展示如何为建模说明(model transparency)、模型预测能力和资源需求构建一系列的权衡。
3、在行政机关工作人员会议上提出一个关于解雇排名靠后的人的企业重整建议。
4、访问34个对你的项目有敌视态度的不同部门,梳理出他们一直不愿意提供的元数据资料。
5、构建、测试和部署一个APP,可以提供实时的SLAs,同时可以有效地跨越1000多节点集群。
6、在没有他人帮助的情况下,解决一个至少有200字节长的会出现间歇性错误的代码问题。
7、利用集成方法,提升你正在做一个预测模型的效果。
8、在最后期限日之前,和来自34个和你工作毫不相关的领域的人们一起完成编程项目。
如果你不喜欢上面任何一项工作,那么我建议你不要把“数据科学家”当成你的职业。
数据科学家这个“性感”的角色是大约在2012年由DJ Patil, Hilary Mason等人提出的,然而不是每个人都能分到这个40亿美元产业的一杯羹。
2012年的状况和现在已经有很大的区别,现在在数据科学领域工作意味着:
1、在待开发的领域里有一些创新的机会,但不是经常会有。
2、大多数现有的项目是有风险的。
3、必须对一些权威提出挑战(这不好玩,但是是这个角色的精髓)。
DJ和其他人之前所做的,大多数同数据相关的问题是社会或者组织(例如,数据孤岛,缺乏元数据,矩阵组织内讧等)或者是组织里对这个问题已经有了明确的回答。
我有一种预感,在电子商务领域已经有很多有趣的工作出现,优秀的人们将继续保持极高的价值,但是工作将向硅谷外转移,或者是其他行业的人们将来这里进行学习、合作、交易等等。
例如Monsanto(一家位于美国密苏里州的巨型跨国农业生物技术公司),他们在旧金山成立了一个公司,其实他们可以投资更多的钱在拥有更有利条件的公司上,正如其他风险投资(VC)所做的。然而,该地区的风险投资人(VC)却忽略了相关数据在企业的重要作用——除了特斯拉(Khosla)。在过去的几个月中,他们已经收购了:Climate Corp, Solum等等,我期待着这种趋势的发展。
(Climate Corp 是一家意外天气保险公司,为美国的农民提供天气意外保险。Solum是一家农业领域的科技创业公司,它们的测量系统能够实现更高效、更精准的农产品抽样分析。)
从我的角度来看,数据最大的问题还没有出现,它应该解决真正的问题,例如食品供应,干旱/洪水,能源安全,医疗保健,电信,交通运输减少对石油的依赖,更智能的生产,森林砍伐监测,海洋分析等等。
此外,IT预算仍然限制了数据的洞察力。太多的预算流向了“数据工程“人员,太多的预算往往被指定用于已经清理的数据。另外,我发现,在SV中“产品管理”的概念同有效利用数据的概念是对立的,在许多情况下,产品管理会阻碍公司数据的使用。cda数据分析师考试
因此,我们的价值一般会体现在以下几个方面:
1、编写代码来准备数据。
2、用自动化流程来提高工程的性能和模型比赛。
3、对权威用数据进行挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15