京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站数据分析的基本流程_数据分析师考试
网站数据分析没有规范的分析流程容易使最后的结果逻辑混乱或者偏离原来的主题,所以一套规范的流程能够使网站分析更加清晰和有效。
网站分析其实就是一个发现问题、分析问题的解决问题的过程。问题的发现可以来源于多方面:网站运营中遇到的问题、用户的反馈和抱怨、日常统计数据的表现异常等;分析问题的过程就是根据遇到的问题运用合理的方法对其进行解释,这也是本站重点探讨的方向;而最后的解决问题则是最为关键的一点,也是目前最被忽视的一点,目前的网站分析工作往往在找到问题后无法落实到寻求最优的解决方案并执行和解决问题这一点上,即使采取了相应的措施也无法进行持续的反馈,并从根本真正地解决问题,很多只是针对一时的举措,而解决问题的过程恰好是最能体现公司执行力的时候,如果没有最终解决问题或者实现优化,那么网站分析就没有丝毫的价值。
随着互联网的不断发展成熟,网站的发展趋势将更加规范化、精细化,更加注重用户体验,今后的网站建设很重要的一点就是网站的质量管理,所以这里就借用质量管理里面的六西格玛中的DMAIC循环来梳理一下网站数据分析的流程,DMAIC是PDCA质量环的改进,这里将其核心设置为“用户体验”,因为不同网站会有不同的目标,而提高“用户体验”可以说是所有网站的共同目标。
基于DMAIC循环,网站数据分析的流程也可以用这5步来实现:
原意是识别和确定用户需求,定义任务的目标和意义。对于网站数据分析来说,可以表述为确定这次分析所针对的问题是什么,分析最终需要达到何种目的,对网站有何实际的意义,同时需要确定分析的范围,及规划本次分析工作的进度和质量控制。
原意是收集数据,量化分析。对于网站数据分析来说,同样也是一个收集和获取数据的过程,尽量获得完整、真实、准确的数据,做好数据的预处理工作,便于分析工作的开展。
原意是使用数据统计和分析的方法找到问题的本质。分析不只是对数据的简单统计描述,其结果不应该是一张报表和趋势图这么简单,分析的本质应该是从表面的数据中找到问题的本质,最后需要第一步针对的问题进行归纳和总结。同时需要注意的是分析要紧跟“定义”,不能偏离问题的范围和本质。
原意是找到最优的解决方案,是问题得到解决或者使问题的负面影响降到最低。个人认为这一步是最为关键的一步,也是目前很多网站分析工作中较为忽视的一步,很多网站分析只是呈现结果,缺少解决问题的方案,这就相当于找到了管道的漏水点却任由其漏水而不作处理,任何不付诸实践的分析结果都是废纸,毫无意义。同时这一步也是最考验网站执行力的一个步骤。
原意是监控改进的结果,使相同问题不再重现。这一步无疑是目前最被忽略的一步,很多改进方案实施之后根本不会再去关注反馈情况,而有些改进方案治标不治本,就像网站的访问量无法通过一两次的推广活动通过本质上的提升,关键还在于网站本身的质量,推广活动可能让数据在短期内获得提升,但想要保持长期地增长还是需要不断地优化和改进。所以“控制”要的是持续的反馈和监控,并不断寻找能从最根本上解决问题的最优方案。
所以,网站建设是一个循序渐进的过程,很多网站数据分析也是长期的,不断监视、跟踪并改进,而DMAIC循环也正体现了这个概念,通过不断地网站分析来提高网站质量,提高用户体验。说到网站分析一般都会借助网站分析工具,当然有免费的,也有收费的,比如百度,GA,这些平台本身就有广告业务,所以分析出来的数据可能有失偏颇,除此之外免费工具的盈利模式肯定会借助这些数据,所以数据安全成为企业的堪忧。当然国内也有一些收费的分析工具,一般来说商用的收费工具一般都用于第三方监测统计,相对来说数据会更安全一些,功能上更全面一些,操作起来可能也比较简单一些。总体来说不管是免费的还是商用的,最终还是要取决于企业。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06