京公网安备 11010802034615号
经营许可证编号:京B2-20210330
论大数据对汽车后市场的价值_数据分析师考试
在政府提出的众多针对汽车后市场的政策中,汽车维修数据的开放成为该行业突破性发展的标志。维修数据公开以后,所融合形成的更多维度的大数据能够让整个车后市场形成一个整体,从而打破行业垄断所造成信息不对称壁垒。
在大数据基础上,整条产业链上的维修、保养等各环节商家都能更专注与自己所在的行业,所需要的相关数据只要与专门做数据的商家对接即可,这样整个行业就都做轻了,汽车后市场的竞合时代也就由此开始。
从产业链来看,当前中国汽车后服务市场基本可分七个大类:包括养护、维修、改装、二手车、汽车配件、相关电商及金融保险等。这七个大类其实可以再做细分,譬如养护就包括洗车、美容、机油及零件更换等服务。
七大类汽车服务可以分为汽车服务、车联网相关、及工具社区等三种类型,当前而言,汽车服务类的众多商家正在由重向轻变化,开始由产业链低层向中间层过度,做“服务汽车服务商”的服务商。这一类商家无论是做平台的还是做垂直服务的,在信息化方面都在向“大数据”过渡。
因为商家们发现汽车后市场服务中的竞争不在于维修人员的多少,更需要的是对原厂配件、品牌配件、工时、维修信息等数据的适配,举个例子,比如机油滤清器(简称机滤)需要与上门的客户车型匹配,可原厂机滤很贵,一般的o2o公司都使用曼牌的,那曼牌的哪款机滤适合这个客户的车型呢?这就需要用数据库来做匹配支持。在数据获取上,有数据积累的商家可以通过更多的渠道获得信息,没有积累的则会与专业的数据库企业进行合作。整个产业链对大数据服务都有重度需求。
大数据能带给行业更多的在于商家对于客户以及业务的管理,这些数据具体到汽车后市场,则是对汽车后市场服务商家在沟通用户以及商业营销的综合性管理。尤其是车型、配件、品牌、保养等数据的灵活调取与应用方面,可以让商家近距离接触车主。甚至不用询问就能了解车主用车信息,可以进一步为车主提供一站式汽车服务方案。
那么,汽车后市场需要那些数据呢?一个合格的数据服务提供商,应该做到以下几点:
全品牌全车型全配件的数据信息。要有基于VIN的全车型全配件的通配架构,配件数据库包括:VIN码识别库、车型配置库、保养规则库、配件原厂件号品牌件号通配数据库等。
与国外同步的数据库关联结构。即时同步国外零部件供应商的信息,能够保证最新车型的零部件填充数据库。
互联网化的API数据服务。保证每一个与其合作的商家,都能通过API接口对接到并调取所需的数据库信息。
至少5年以上的数据库制作经验。整个汽车后市场对数据的需求越来越大,同时也正在产生更大量的数据,数据处理经验以及数据库制作经验尤为重要。
老生常谈的数据维护。从全品牌到全车款,海量的数据挖掘与匹配,没有一个足够强大的运营团队是不行的。
DT时代,车辆上传的每一组数据都带有位置信息和时间,并且容易形成海量数据。在大数据平台上,基于对车辆数据、道路数据、环境感知数据等海量信息的处理、分析、汇总,汽车服务商或整车厂商可获得相关车主的车况、驾驶行为、里程等行车、用车过程中的数据,从而可基于大数据挖掘对车主进行精细化的管理。
以上所讲的是广义上大数据对汽车后市场行业的影响,体现在到车后服务方面,大数据确实能够解决很多问题。具体而言,大数据模式对于该行业的一些价值可以表现为以下几点:
首先,促进产业链配件交易的效率。目前,B2B配件交易通过电话询问的发单准确度不足50%,前文所述几大数据库是保证交易信息的准确性的基础,网络交易可以为商家及车主提供更详尽的配件信息,重复换货频次降低。
其次,多种选择为商家带来价格优势。数据库不只是为商家提供原厂配件信息,同时也提供其他品牌的可替换配件,车主可以根据情况选择合适的配件,同时这也是品牌商家的一个销售渠道。
再者,改变了传统的咨询方式。将传统汽配行业1对1电话询件询价方式,提升为1对多的数字化询价方式,极大的提高了商家与车主、商家与配件商的沟通效率。
同时,提供了交易配件的追溯源头可行性。数据库对配件厂商、配件分销商、配件连锁分销商、汽车保养商、配件B2B电商平台及O2O服务平台都有清楚的记录,并能够逆向查询,这样配件以及服务出现问题之后,便可以逆向找到交易源头,解决了汽车后市场服务的透明化与公正性的问题,无需再用第三方监督。
还有,符合国家提倡的“同质配件”战略。当前,中国汽车维修行业协会正在大力推广“同质配件”行动,以推进汽车维修行业健康发展。同质配件也就是“质量相当配件”,具体到汽车零配件上也就是可以替换原厂配件的零配件替代品,价格更低同时性价比更高。这个政策可以增强民族制造业积极性,并能够降低消费者维护成本。
在行业影响方面,除了以上几点,在“互联网+传统”行业方面,大数据融入传统企业的CRM系统并倒逼传统企业升级转型,是“互联网+”落到实处的一个重要的途径。
总而言之,大数据将会为整个汽车后市场行业的进步提供更有利的基础。同时,无人驾驶、车联网、智慧交通及工业4.0等也将受益其中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17