京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:创造崭新的生存环境_数据分析师培训
大数据,已经为人类创造出一个崭新的环境。信息技术使人类置身于一个崭新的数字化的数据环境,这个环境一方面扩大了人类的理解,另一方面,作为个体则必须在这个特定的环境中对自己的目的、价值和意图进行重建,从而达到强调自己个性和分享他人个性的理解。
各行各业,当下是言必称数据。那么究竟何为大数据呢?根据我的理解,如果说互联网是关于“物”的,那么大数据就是关于“人”的,所以说只有关于人的数据才能称之为大数据。大数据并非数据大。纯粹从量上看,大数据在互联网上早就存在了,在其基础之上,催生了整个搜索产业。可当下时髦的“大数据”一词却有所不同,它所展示的是以网络为依托的新型社会媒体的一个方面。由于直接与人相关,大数据成了金矿,有待人们进行数据挖掘,并从中寻求各种机会。数据挖掘已是相当成熟的领域,它把人的行为的结构化数据与其背景和人口统计学的信息相结合,已经产生出很多成果和应用,如有的放矢的广告和营销等。人们可以把社会媒体大数据中提取出的自然语言文本的情感挖掘视为一种数据挖掘的自然延伸。由于大数据的无限开放性,未来的潜力甚至更大。
人的行为维度具有无限的可能性,但人的资源却又是有限的。那么如何协调无限和有限的关系?由于有了海量的数据和强大的计算处理能力,有了人与人、人与物的互联互通,就是可以成就人的行为的无限可能性。举个例子来说,电子商务把这一点体现得淋漓尽致。但传统的数据由于属性有限,个体参与度较低,其价值预期比例大,即数据处于压缩状态,而无法协调无限和有限的关系。大数据体现的结果就是将传统的数据“解压缩”,使其数据密度大大减小,从而放大个体数据的效应。由于大数据是关于人的,那么它就不单是一个技术问题,而且也是一个管理问题。认识到这一点就要破除传统的管理办法,将数据打通,使其不断更新,避免产生“数据孤岛”现象。那么,首先就要给出“全量数据”,也就是说,关键的数据不能缺失;其次,那些关键信息是不能靠专家规定。
大数据是关于人的,可是它们却都要被计算机处理。因此关于人的数据一定要有关于原始大数据的“元数据”,它们是为机器服务的。必须通过元数据的语义标示并赋予其意义,才能被机器处理。因此,若想从数据中发现知识,就必需大量的元数据。元数据就好比影视剧中的“桥段”,将机器中的原始数据与人的行为连接起来。而大数据挖掘技术恰恰就是针对元数据的。尽管如此,大数据还是有其无法企及的地方。大致可以归纳为以下几点:不能没有有效的商业模式,不能替代管理的决策力,不能保证消除噪音,不能进行无目的的知识发现,不能一次建模终身受益,不能替代领域专家,不能忽略数据标注,等等。同时也要看到,大数据并非一个终极阶段,它的出现不过是人类历史进程的一个环节,其重要意义在于是计算机技术为整个人类带来变革中的一步。回顾历史,计算机从上个世纪50年代起就在人类历史上开始了潜移默化的革命,其根本标志就是“数字化”,以及物理世界和虚拟世界的无缝接合。
既然是历史的一个发展环节,那么也就可以对未来趋势做出一定的预测。与以往历史上其他重要变革都是一样的,要通过资源——大数据——的原始积累,再过渡到商业和社会服务的差异化(即因人而异),直到人类对虚拟世界的行业和社会服务加以规范以实现公平合理的数据资源分配。始于18世纪的工业革命经历了一百多年,但这次数字的革命将以更快的形式发生。由大数据引发的下一代技术很可能是更大规模的、面向数字化行业的转变。因而,使得现在物理世界的众多传统行业将向数字世界全面或部分转换和融合。这种转变也让许多现在需要众多专家的领域以另一种形式出现。具体可以体现在很多行业的在整体的“食物链”的上下游的改变。医生、科学家和教师等,到了那一天或许变成为大数据输送原料的数据采集者和分析结果的“工人”。
在工业社会,通过利用人们日常生活所留下的各种数据,便可以掌控人的生活方式、习惯、下落以及社会关系等。而到了信息社会,这些数据必然会被数字化,因而人们的各种道德行为、伦理准则和社会生活也会随之产生相应的改变。信息技术使人类置身于一个崭新的数字化的数据环境,这个环境一方面扩大了人类的理解,另一方面,作为个体则必须在这个特定的环境中对自己的目的、价值和意图进行重建,从而达到强调自己个性和分享他人个性的理解。任何技术都倾向于创造一个新的人类环境。而信息技术、电脑网络乃至最近问世的大数据,已经为人类创造出一个崭新的环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29