京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何对考试成绩进行数据分析(2)-数据分析师考试
五、如何简洁作出标准分的数据? 打开08级成绩,看“原始分换算成标准分”,分别在语文、数学、…后面插入一列,例如:白月同学的语文标准分是108,在其后面的空格中输入:=100*(D2-AVERAGE(D$3:D$746))/STDEVP(D$3:D$746)+500这就将白月同学的语文成绩转化为标准分了,成绩是445分。只需要双击445就可以将所有高一的学生语文成绩都转化为标准分了,只需复制这一列到数学后一列,就自动生成了数学的标准分了,同理可得到其他各科的标准分。
六、如何对数据进行分析
1、任课教师如何通过数据对学生进行指导
打开08级成绩,看“学生标准分与班级各科平均分”,例如:通过白月同学的成绩可以明显看出,她的理科相对比较强,尤其数学非常突出,超过了86.65%的同学,文科相对比较薄弱,尤其历史,有86.21%的同学超过了她。再看“学生增值与班级各科平均增值”,白月同学的数学、化学较上次期中考试进步幅度较大,而语文、历史、地理较上次期中考试退步也很明显。任课教师可以深入了解白月同学的学习方法与学习习惯,针对本学科的特点,提供给她一些合理化的建议。
2、任课教师如何通过数据反思自己的教学打开08级成绩,看“学生标准分与班级各科平均分”,例如:高一、1班的英语平均分为531,在全班各科名列第一,在高一外语中也名列第一,在高一各科中也名列前茅,因此这个班的英语不仅是班级的优势科,也是高一级部的优势科。再看“学生增值与班级各科平均增值”,高一、1班的英语平均增值为9,增值率(正增值的学生数除以学生总数)为55.32%,说明该科老师的教学对高一、1班学生的正影响较大。
Excel应对特殊学生成绩分析统计
1.考试混合编,成绩统一理--老方法遇到新问题
关于使用Excel进行学生成绩处理,已经是老话题了。但在实际工作中还是会有很多新问题,例如,现在很多学校都是全年级各班混在一起考试,以防考试改卷中的不正当竞争。而统计成绩时,则是将已判分但未拆封的考卷统一交到教务处,先按座位号顺序(每本考卷的自然顺序)录入各科分数,再分析统计出全年级各科成绩。举例说明,如图1(记录11至830隐藏了),要统计二(1)班优秀人数,传统做法就是先按考试号排序,再通过公式“=COUNTIF(分数!D2:D69,">=96")”求出。它的弊端是要手工逐个修改“D2:D69”这个参数中的两个行号(2和69),这可是一项工作量很大的工作。当然,简单的方法还是有的,往下看吧。 2.初步准备--考试号里提班级
如图1,从B列的考试号中取出前三位(班级编号)放在S列,即在单元格S2输入公式“=LEFT(B2,3)”,然后双击(或拖动)S2单元格右下角的填充柄即可。3.再做辅表--班级等级二合一
在图1所示的工作簿中再新建一工作表,并将其命名为“等级”,在单元格A1中输入公式“=分数!A1”,回车,选定A1,按住A1右下角的填充柄向右下拖至C840单元格,将“分数”工作表中的姓名、考号、座位号引用到“等级”工作表中(注意,千万不能复制粘贴过来,这样不能保持两表数据的一致性)。再选定C1,按住C1右下角的填充柄向右拖至L1单元格,将语文、数学等9个学科科目引用过来。接着,在D2单元格中输入IF嵌套公式“=IF(分数!D2>=96,分数!$S2&&"a",IF(分数!D2>=72,分数!$S2&&"b",IF(分数!D2<48,分数!$S2&&"d",分数!$S2&&"c")))”。D2单元格中公式的含义是:看“分数!D2”单元格中的分数(即“分数”工作表中李悦的语文分数)是否大于等于96。如果是,则在D2单元格中填入“201a”——“分数”工作表中S2单元格中的字符“201”加上“a”(“201”表示二(1)班,“a”表示成绩等级为“优秀”);如果不是(即小于96),再看是否大于等于72。如果是,则在D2单元格中填入“201b”;如果不是(即小于72),再看是否小于48。如果是,则在D2单元格中填入“201d”;如果不是(即小于72大于48),则在D2单元格中填入“201c”。最后按住D2单元格右下角的填充柄向右下拖至L840单元格,就可以将每个学生各科成绩的等级及所属班级都填好了
4.最终统计--所需数据瞬间齐
辅表制好之后,言归正传回到“统计”工作表(如图2)中,在A17到E28单元格区域中利用自动填充功能再制作一小块辅助数据(如图2)。
万事俱备,下面开始班级总人数及优秀率、及格率等的统计了。仍以二(1)班优秀率为例,现在就改用这样的公式了“COUNTIF(等级!$D:$D,$B17)”,即对“等级”工作表中D列所有单元格进行统计(等级!$D:$D),找出值为“201a”(本工作表即“统计”工作表的$B17的值,代表二(1)班优秀率)的单元格数目。 具体做法如下:
(1)班级总人数(在B4单元格中输入):“=COUNTIF(分数!$S:$S,A17)”;
(2)优秀人数(在C4单元格中输入):“=COUNTIF(等级!$D:$D,$B17)”;
(3)优秀率(在D4单元格中输入):“=C4/$B4 100”;
(4)及格人数(在E4单元格中输入):“=COUNTIF(等级!$D:$D,$B17)+COUNTIF(等级!$D:$D,$C17)”;
(5)及格率(在F4单元格中输入):“=E4/$B4 100”;
(6)低分人数(在G4单元格中输入):”=COUNTIF(等级!$D:$D,$E17)”;
(7)低分率(在H4单元格中输入):“=G4/$B4 100”;
到此为止,其余数据通过自动填充功能,瞬间即可完成。
5.方法点评--一表成,终年用,一劳而永逸
(1)不同年级成绩统计的简单套用:比如,首先制作好了一年级的统计表,通过复制粘贴将第一个工作表(“分数”工作表)的内容更改为二年级的数据表,则二年级的成绩统计便自然而成。
(2)多次考试成绩统计的简单套用:这次考试的统计表,到下次考试成绩统计时,照用不误,只将第一个工作表换成新生的成绩记载就可以了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31