
如何对考试成绩进行数据分析(2)-数据分析师考试
五、如何简洁作出标准分的数据? 打开08级成绩,看“原始分换算成标准分”,分别在语文、数学、…后面插入一列,例如:白月同学的语文标准分是108,在其后面的空格中输入:=100*(D2-AVERAGE(D$3:D$746))/STDEVP(D$3:D$746)+500这就将白月同学的语文成绩转化为标准分了,成绩是445分。只需要双击445就可以将所有高一的学生语文成绩都转化为标准分了,只需复制这一列到数学后一列,就自动生成了数学的标准分了,同理可得到其他各科的标准分。
六、如何对数据进行分析
1、任课教师如何通过数据对学生进行指导
打开08级成绩,看“学生标准分与班级各科平均分”,例如:通过白月同学的成绩可以明显看出,她的理科相对比较强,尤其数学非常突出,超过了86.65%的同学,文科相对比较薄弱,尤其历史,有86.21%的同学超过了她。再看“学生增值与班级各科平均增值”,白月同学的数学、化学较上次期中考试进步幅度较大,而语文、历史、地理较上次期中考试退步也很明显。任课教师可以深入了解白月同学的学习方法与学习习惯,针对本学科的特点,提供给她一些合理化的建议。
2、任课教师如何通过数据反思自己的教学打开08级成绩,看“学生标准分与班级各科平均分”,例如:高一、1班的英语平均分为531,在全班各科名列第一,在高一外语中也名列第一,在高一各科中也名列前茅,因此这个班的英语不仅是班级的优势科,也是高一级部的优势科。再看“学生增值与班级各科平均增值”,高一、1班的英语平均增值为9,增值率(正增值的学生数除以学生总数)为55.32%,说明该科老师的教学对高一、1班学生的正影响较大。
Excel应对特殊学生成绩分析统计
1.考试混合编,成绩统一理--老方法遇到新问题
关于使用Excel进行学生成绩处理,已经是老话题了。但在实际工作中还是会有很多新问题,例如,现在很多学校都是全年级各班混在一起考试,以防考试改卷中的不正当竞争。而统计成绩时,则是将已判分但未拆封的考卷统一交到教务处,先按座位号顺序(每本考卷的自然顺序)录入各科分数,再分析统计出全年级各科成绩。举例说明,如图1(记录11至830隐藏了),要统计二(1)班优秀人数,传统做法就是先按考试号排序,再通过公式“=COUNTIF(分数!D2:D69,">=96")”求出。它的弊端是要手工逐个修改“D2:D69”这个参数中的两个行号(2和69),这可是一项工作量很大的工作。当然,简单的方法还是有的,往下看吧。 2.初步准备--考试号里提班级
如图1,从B列的考试号中取出前三位(班级编号)放在S列,即在单元格S2输入公式“=LEFT(B2,3)”,然后双击(或拖动)S2单元格右下角的填充柄即可。3.再做辅表--班级等级二合一
在图1所示的工作簿中再新建一工作表,并将其命名为“等级”,在单元格A1中输入公式“=分数!A1”,回车,选定A1,按住A1右下角的填充柄向右下拖至C840单元格,将“分数”工作表中的姓名、考号、座位号引用到“等级”工作表中(注意,千万不能复制粘贴过来,这样不能保持两表数据的一致性)。再选定C1,按住C1右下角的填充柄向右拖至L1单元格,将语文、数学等9个学科科目引用过来。接着,在D2单元格中输入IF嵌套公式“=IF(分数!D2>=96,分数!$S2&&"a",IF(分数!D2>=72,分数!$S2&&"b",IF(分数!D2<48,分数!$S2&&"d",分数!$S2&&"c")))”。D2单元格中公式的含义是:看“分数!D2”单元格中的分数(即“分数”工作表中李悦的语文分数)是否大于等于96。如果是,则在D2单元格中填入“201a”——“分数”工作表中S2单元格中的字符“201”加上“a”(“201”表示二(1)班,“a”表示成绩等级为“优秀”);如果不是(即小于96),再看是否大于等于72。如果是,则在D2单元格中填入“201b”;如果不是(即小于72),再看是否小于48。如果是,则在D2单元格中填入“201d”;如果不是(即小于72大于48),则在D2单元格中填入“201c”。最后按住D2单元格右下角的填充柄向右下拖至L840单元格,就可以将每个学生各科成绩的等级及所属班级都填好了
4.最终统计--所需数据瞬间齐
辅表制好之后,言归正传回到“统计”工作表(如图2)中,在A17到E28单元格区域中利用自动填充功能再制作一小块辅助数据(如图2)。
万事俱备,下面开始班级总人数及优秀率、及格率等的统计了。仍以二(1)班优秀率为例,现在就改用这样的公式了“COUNTIF(等级!$D:$D,$B17)”,即对“等级”工作表中D列所有单元格进行统计(等级!$D:$D),找出值为“201a”(本工作表即“统计”工作表的$B17的值,代表二(1)班优秀率)的单元格数目。 具体做法如下:
(1)班级总人数(在B4单元格中输入):“=COUNTIF(分数!$S:$S,A17)”;
(2)优秀人数(在C4单元格中输入):“=COUNTIF(等级!$D:$D,$B17)”;
(3)优秀率(在D4单元格中输入):“=C4/$B4 100”;
(4)及格人数(在E4单元格中输入):“=COUNTIF(等级!$D:$D,$B17)+COUNTIF(等级!$D:$D,$C17)”;
(5)及格率(在F4单元格中输入):“=E4/$B4 100”;
(6)低分人数(在G4单元格中输入):”=COUNTIF(等级!$D:$D,$E17)”;
(7)低分率(在H4单元格中输入):“=G4/$B4 100”;
到此为止,其余数据通过自动填充功能,瞬间即可完成。
5.方法点评--一表成,终年用,一劳而永逸
(1)不同年级成绩统计的简单套用:比如,首先制作好了一年级的统计表,通过复制粘贴将第一个工作表(“分数”工作表)的内容更改为二年级的数据表,则二年级的成绩统计便自然而成。
(2)多次考试成绩统计的简单套用:这次考试的统计表,到下次考试成绩统计时,照用不误,只将第一个工作表换成新生的成绩记载就可以了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07