
告别大数据,掌握“广数据”才是关键_数据分析师培训
大数据的概念确实有点歧义。当然,来自网络、电话、和其他数据源的信息确实数据量很大,但数据的主要价值并不在规模中。要从大数据中获取真正的商业价值,用户和BI供应商等还需要关注对广泛来源的数据的集成和分析,简言之,就是广数据。
未来商业的成功,依赖于大数据和企业主流数据系统中的数据能否有机地结合。很多供应商开发了很多技术来实现,比如在NoSQL数据库和Hadoop资源池上实现SQL查询。这种技术趋势很利于行业发展,因为新技术和老技术终究要结合起来。
对于管理大量非结构化数据来说,Hadoop是个好东西,但要实现精益分析,尤其是针对既有结构化数据、又有非结构化数据的数据结构时,Hadoop就显得力不从心了。另一方面,传统关系型数据库在利用几乎同一调用方式访问异构数据源方面,有着悠久的历史。而且从事数据分析的技术人员更熟悉的也是SQL语言。
另外,大多数用户想要的都是技术上的稳步革新,而不是彻底的变革。这意味着企业在采用新技术的同时,要最大限度地使其能够和现有IT生态系统融合,保护历史资产。因此,Hadoop集群、NoSQL数据库中的信息需要和传统的数据库和数据仓库的数据有效集成,这样才能更好地构建客户、市场趋势、企业运营视图。比如社交媒体的客户情感数据固然有价值,但如何不能和其他客户数据、市场数据相联,反应的情况也是片面的。
物联网数据不能孤立
物联网(IoT)也是大数据的重要数据源之一。安装在产品和机器设备上的传感器可以捕捉数据,并通过互联网将数据发送回运营系统。物联网大多应用于大型制造业,比如石油管道的远程传感器监控,卡车、货车等车辆的维护相关信息收集。
物联网的作用很大。传感器发回的大量信息可以帮助用户更好地监控质量问题、了解地域差异等等。物联网数据增长迅猛,随着时间的发展,很可能会差多Web数据。但同样,如果只是狭义地关注物联网数据,没有把它和众多其他数据源的数据集成,企业会错过很多有价值的信息。
数据仓库的潜力还没有完全发挥出来。一个主要的原因就是数据仓库很难利用实时数据。另一方面看,数据仓库处理的多是历史数据等变化缓慢的数据,处理这些数据根本不需要像处理实时数据一样。因此,好的BI和分析平台应该是既能处理历史数据,又能处理实时数据。将数据仓库和大数据技术结合起来,可以考虑内存处理。
下一代大数据技术应该解决的难题
更广义来看,大数据还应包括数据的流动,即数据从数据源产生到交到用户手里的过程。很多专家责难企业数据仓库没有“单一真相”,同样的数据产生出五花八门的分析结果,以及难以实现有效的数据治理。
现在,移动设备和自服务BI工具极大地改变了信息的传播范围。当数据进入移动设备,你很难监管它的传播。都有谁看了该信息?信息传播的轨迹是怎样的?有效的BI和大数据管理不只是收集和处理信息,也是管理信息的流通和传播。
数据规模确实是一个技术难题,但核心的问题在于广数据。如何将多种数据源的数据集成起来,如何处理,再如何让广大的用户用于业务决策和分析,这才是技术应该最主要关注的问题。要做到支持广泛的数据环境,供应商需要关注这些问题:
提供结构化数据和非结构化数据的访问,并能有效集成
能够以不同的方式有效管理不同的数据集
支持强大的数据治理模型
下一代BI和大数据技术必须能够解决数据的广度和复杂度的问题,而不仅仅是数据量。大数据不仅仅是数据量的大,更包含数据的广泛性。用户和供应商最好能在这一点上达成共识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29