
浅谈SEM数据分析的意义、维度和结果_数据分析师
提起SEM,不可避免的要谈到数据分析。“对数据变IC芯片激光打标样品-IC芯片化敏感,具有一定的数据分析能力“是所有公司都会提到的硬性要求。那么,SEM的数据分析到底应该怎么做呢?利用SEM数据分析又能IC芯片激光打标样品-IC芯片起到怎样的效果呢?从数据分析的”意义“、”维度“和”结果“这三个方面来考虑,这些问题就不难回答。
同理,SEM的数据分析也是如此,我们只是通过数据分析在行业低谷到来前避免潜在的无效投放,在行业高峰来临之际,做好充足准备。如此进退有度,SEM效果也会随之提升。 SEM数据分析的维度 几乎所有SEM推广账户的后台都能为用户提供数据统计和下载服务。面对琳琅满目的数据记录,不少SEMER会看花眼。我们该看哪些数据呢?这就要求SEMER拥有一定对数据维度筛选的能力。我们需要根据自己投放SEM的目的来筛选需要的维度去看数据,这样不但不会让人头晕,更能提高我们数据分析的效率。
目前,SEM的投放目的基本可以分为效果投放和品牌宣传两类。其中,效果转化是指以咨询量、订单量等为目的的投放。从结果倒推回去看,这样我们会发现要有咨询和订单需要用户访问我们的网站,而让用户访问我们的网站则需要网站有展现,并且要有足够的出价来确保其必要的排名,这样能保证一定的点击量。所以,效果投放的账户往往需要关注点击量、展现量、点击率、消费、平均排名等相关维度的数据。另外,还要根据咨询收益、订单收益计算投入产出。更细化的数据,还可以关注到每一个页面的转化率等。
品牌宣传更注重网站品牌的曝光率。这就需要我们更关注网站的展现量,以及不同关键词和搜索词的具体展现和点击等。如果想进一步了解网民对品牌的认知度,还可以观察每个访客的访问深度,以及各个页面的停留时长等。 此外,要真正做好SEM的数据分析,SEMER还需要根据各自的情况,关注推广账户外的数据。通过其他终端各维度的数据反馈和整合,做好SEM的数据分析。 SEM数据分析的结果 如前文所说,SEM的数据分析可以改善投放效果。
但是,SEM最终的结果其实可以包含更多。比如,SEM的数据分析可以为SEO提供更多帮助。 众所周知,SEO的操作要通过较长的时间来体现效果。因此,选词、站内布局都必须慎重。若一开始就错了,那么后面无论是终止,还是修改,都会造成时间、人力等成本的浪费。可谓“一步走错,全盘皆输”。而SEM的投放只要审核通过后便开始进入数据收集和反馈阶段。通过SEM投放,我们很快就能知道关键词的搜索量如何,转化如何,有没有其他相关关键词等。凭借SEM投放得到的数据,加以分析和筛选,再交由SEOER去操作,这样能更明确操作方向,并节省不少摸索的时间。
一个SEMER在做SEM数据分析的时候该做些什么呢? SEMER们既可大张旗鼓的做上几十页数据报表并加以分析陈述,也可以简单的只花几分钟汇总一下某个时段的投放数据。SEM的数据分析犹如人的一生,或浓郁烈酒,或淡如白水,关键是从中能得到什么。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16