
浅谈SEM数据分析的意义、维度和结果_数据分析师
提起SEM,不可避免的要谈到数据分析。“对数据变IC芯片激光打标样品-IC芯片化敏感,具有一定的数据分析能力“是所有公司都会提到的硬性要求。那么,SEM的数据分析到底应该怎么做呢?利用SEM数据分析又能IC芯片激光打标样品-IC芯片起到怎样的效果呢?从数据分析的”意义“、”维度“和”结果“这三个方面来考虑,这些问题就不难回答。
同理,SEM的数据分析也是如此,我们只是通过数据分析在行业低谷到来前避免潜在的无效投放,在行业高峰来临之际,做好充足准备。如此进退有度,SEM效果也会随之提升。 SEM数据分析的维度 几乎所有SEM推广账户的后台都能为用户提供数据统计和下载服务。面对琳琅满目的数据记录,不少SEMER会看花眼。我们该看哪些数据呢?这就要求SEMER拥有一定对数据维度筛选的能力。我们需要根据自己投放SEM的目的来筛选需要的维度去看数据,这样不但不会让人头晕,更能提高我们数据分析的效率。
目前,SEM的投放目的基本可以分为效果投放和品牌宣传两类。其中,效果转化是指以咨询量、订单量等为目的的投放。从结果倒推回去看,这样我们会发现要有咨询和订单需要用户访问我们的网站,而让用户访问我们的网站则需要网站有展现,并且要有足够的出价来确保其必要的排名,这样能保证一定的点击量。所以,效果投放的账户往往需要关注点击量、展现量、点击率、消费、平均排名等相关维度的数据。另外,还要根据咨询收益、订单收益计算投入产出。更细化的数据,还可以关注到每一个页面的转化率等。
品牌宣传更注重网站品牌的曝光率。这就需要我们更关注网站的展现量,以及不同关键词和搜索词的具体展现和点击等。如果想进一步了解网民对品牌的认知度,还可以观察每个访客的访问深度,以及各个页面的停留时长等。 此外,要真正做好SEM的数据分析,SEMER还需要根据各自的情况,关注推广账户外的数据。通过其他终端各维度的数据反馈和整合,做好SEM的数据分析。 SEM数据分析的结果 如前文所说,SEM的数据分析可以改善投放效果。
但是,SEM最终的结果其实可以包含更多。比如,SEM的数据分析可以为SEO提供更多帮助。 众所周知,SEO的操作要通过较长的时间来体现效果。因此,选词、站内布局都必须慎重。若一开始就错了,那么后面无论是终止,还是修改,都会造成时间、人力等成本的浪费。可谓“一步走错,全盘皆输”。而SEM的投放只要审核通过后便开始进入数据收集和反馈阶段。通过SEM投放,我们很快就能知道关键词的搜索量如何,转化如何,有没有其他相关关键词等。凭借SEM投放得到的数据,加以分析和筛选,再交由SEOER去操作,这样能更明确操作方向,并节省不少摸索的时间。
一个SEMER在做SEM数据分析的时候该做些什么呢? SEMER们既可大张旗鼓的做上几十页数据报表并加以分析陈述,也可以简单的只花几分钟汇总一下某个时段的投放数据。SEM的数据分析犹如人的一生,或浓郁烈酒,或淡如白水,关键是从中能得到什么。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07