
从数据分析讲起,如何提升游戏留存率_数据分析师考试
游戏的留存率达到多少算优秀?之前,Facebook平台流传出留存率“40–20–10”规则,也就是说,如果你想让游戏的DAU超过100万,那么新用户次日留存率应该大于40%,7天留存率和30天留存率分别大于20%和10%。
在手游业蓬勃发展的今天,这些数据指标有变化吗?友盟游戏统计分析数据显示,《暖暖环游世界》的次日留存曾一度高达到60% 。为什么别人的留存率都那么高?今天来浅谈下,对于已经定型的产品该怎么提升留存率。
一、玩家是在哪里流失的?
想要提高用户留存率,就要找出用户在哪个环节流失了,找出流失的原因,然后采取对应的改进措施。举个例子,新手引导环节就是用户流失严重的地方,来看新手玩家的转化路径:启动->注册->创建角色->新手教程->完成前三关。
启动到创建角色这三步往往流失的用户最多,怎么减免这一现象?首先,收集各环节的统计数据来追踪用户转化情况,分析每个环节可能出现的问题。譬如从启动到注册的转化率,注册到创建角色的比例。第二步,根据分析结果来优化后面的引导流程。
1. 新手引导
游戏好不好玩就看前5分钟,而新手引导的目的就是减少玩家挫败感,通过帮助玩家掌握游 戏玩法,从而提高留存率。来看一款消除类游戏的新手任务转化图(来自友盟游戏统计后台)。
图中可以看到游戏的前五步都非常的顺利,转化率都不低,由此可见,新手部分设计是比较成功的。
不过,新手任务设计只是第一步,后面还要对具体每个环节、场景的用户流失情况进行追踪、分析。
2. “埋点分析”
友盟游戏统计平台有个功能叫做自定义事件,行话叫做“埋点”。通过这个功能,不仅可以看到每个event(事件)的详细数量,你也可以通过事件转化率来观察哪个点是流失率最高的点,优化该点功能。
例如一家 CP 想知道游戏新手任务的转化率,则可以通过玩家跟踪了解这个情况。首先在新手任务的关键点里面进行埋点,埋下事件代码1、2、3,先把代码放进去,然后在后台设置漏斗模型,之后就可以看到行为跟踪数据了。
从上图可以看出,步骤二的数据明显偏低,则可以确定是第二步出现了问题,由此开发者就可以针对性的去修复步骤二这一环节。如果没有数据作为验证,不知道问题具体在哪里,很可能把新手任务全部推倒重做,那代价是很大的。
二、减免“用户流失”有哪些措施
首先,有针对性的优化游戏品质。譬如调整游戏的加载时间。在游戏初次启动的时候,加载时间长短是影响玩家的很重要因素。第一次加载过长极易造成流失,开发者可以通过”埋点“可以监控到加载过程的转化率。个人建议控制在10 秒内为好。
再提下画面风格。我一直认为画面的精细越来越重要,游戏设计师@张小勇 在知乎上也提过,”很多玩家打开游戏后一看画面不喜欢,直接退出就删。如果你发现后台数据有很多没怎么玩就流失的玩家,引导环节又没大问题,那么可以肯定这部分流失是因为画面导致的,没救。“
其次,做运营活动,能直接刺激玩家进行某些行为。春节假期将至,开发者可以趁机推出一些具有节日元素的活动。游道易产品经理主管刁正飞就提到,他们代理的休闲类手机游戏《天天过马路》即将发布新春版,新版融入送钱财神、鞭炮等喜庆元素。这类应景的活动要怎么告知老版本玩家?通过消息推送来定制两条内容,一条发给老玩家,引导老版本用户下载更新新版;另一条发给新版用户,提醒他们回到游戏中体验。有助于激活休眠或者已流失的用户。
还有一点,游戏后期的引导也很重要,很多游戏 3 日留存、 7 日留存数据都不错,但 30 日留存率却不行。原因有很多,玩法没有持续更新、版本迭代慢、自然满级或者是游戏做的不够深入等等。其实,开发者发新版本的时候可以集成友盟自动更新的 SDK,在后台上传最新的安装包、填写更新内容,旧版本的用户即可收到升级提示,是进行存量用户更新的有效手段。此外,还可以针对打开游戏频率不同的玩家,譬如 7天打开一次、14天、30天的玩家推送不同的消息,在他们变成流失用户之前把他们留住。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16