京公网安备 11010802034615号
经营许可证编号:京B2-20210330
先有想象力,才能活用大数据_数据分析师
大数据来了,每个人都有机会从中淘金,当然,你的工作内容也将出现大地震!
“巨量数据对个人的影响,可能最令人意想不到。在某些特定领域……,原本的专业知识就变得不足挂齿了。”《大数据》作者维克托·迈尔-舍恩伯格(Viktor Mayer-Schonberger)在书中强调。
要在这个新领域成为赢家,比的不是统计能力,“唯有具备想象力,才能找到大数据真正的创新价值。”维克托·迈尔-舍恩伯格表示。
台湾中研院信息科学研究所副研究员陈升玮解释,这一波大数据趋势有两大重点:“数据重用”与“异类数据结合”。也就是说,把看似不相干的数据,放在一起分析、运用的能力,将越来越重要。
而看似无关的数据结合,靠的就是想象力。不过,想象力到底该如何培养?
“想象力没办法坐在那边想就出来,它是需要练习的。”Google台湾董事总经理简立峰接受《商业周刊》专访时解释。
以下是简立峰独家分享,Google聪明人是怎样从生活、工作中锻炼想象力的摘要。
别光“下指令”,用Data做决策 抛去旧框架,用搜集数据讨论问题
谈到大数据时代,企业主管到一般员工最需要具备的能力是什么,我认为,还是相信data(数据),凡事用data做决策:“show me the data!”决策是基于数据,不是人为个人喜好,是数据告诉我该怎么做。
企业主管必须先相信数据,接着建立数据,才可能有“大数据”。老板要打从心里认同“data driven decision making(数据导向决策)”的重要性,当有一天数据推翻老板看法时,他必须接受,抛去过去的框架、成见,鼓励员工搜集数据来讨论问题,而不是凭自己的意见下指令。
别总是“听说”,用Data找答案 在不疑处充满怀疑,想尽办法求证
提到想象力(为何重要),因为大数据主要是用在创新,开创新的商业模式。
如果你想练习想象力,首先,它就是“think out of box(跳出框架思考)”,无处不怀疑,人家不怀疑的地方,你充满怀疑就对了,而且,懂得怀疑的人,会愿意相信数据,因为他要说服自己不容易,所以得找出数据证明。
我跟我家小孩最喜欢玩的东西,就是看到一件事情,马上去求证它,例如,(有网络消息说)火星上看到一个巨人影像,我们就开始求证是真的还是假的,想尽办法开始搜寻。你可以用图找原始图,找出全世界有多少网站有这张影像,最后,我发现,我要找的链接是NASA网站,(结果)上面就写这是一张假的照片……。这种事情如果养成习惯,你才能有怀疑的能力。
别老“坐着想”,用Data找观点 多讨论,在不同意见中找出最好的
想象力没办法坐在那边想就出来,你还要有分析力,能够把一件事情拆成一百个角度去看,你就有机会刺激想象力,但如果你只有十个角度,你就很难有机会有想象力,想象力是要训练的。
几周前,我们有一个跨部门产品经理的会议,他们都是很有创意的年轻人,大家对土耳其市场搜寻流量突然增加那么多,感到很好奇,现场大概有20个人,马上抛出一百个观点,例如,最近的GDP是否成长?上网的渗透率是否成长?是不是有4G在建设……?接下来大家会很快地debate(辩论),把不合理的因素拿掉,筛出来之后,找出一、两个最有机会的,看要怎么去求证,这就是一个组织展现很强的分析能力。
要如何训练分析力,就是增加大家讨论的机会,美式公司开会表达意见的机会多,意见一旦多,你就要学习从不同意见中找出最好的,如果一个组织是上与下的关系,每次都只有一个人说话,这就培养不成了,越是扁平组织架构,越容易促进大家讨论。
最后,大数据很重要的是求证,Google里面很多数据分析师并不是天马行空地想,相反的,他们都是很严谨的人。
但别把大数据讲成统计学和数学,它只是你会不会懂得观察,生活上很多东西就是大数据的判断,我用搜索引擎也跟统计无关,我觉得用“科学家”这个词就把人吓坏了。大数据真正的用意,就是你重视data,找方法把data转换成价值就可以了,至于“大”(指所谓巨量数据),全世界需要处理大量数据的企业没几个,留给专家处理就好。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26