
把握客户需求 “淘金”大数据市场_数据分析师
目前,虽然中国大数据市场还处在初级阶段,但增速非常迅猛,应用也极其广泛,不管是云计算、物联网、智慧城市还是移动互联都要与大数据扯上关系。未来是数据为王的时代,大数据应用将会越来越广泛的落地在各个领域,大数据绝对是企业未来实现业务突破的重点。
淘金大数据
很多人说,大数据就是大量的数据,事实上,大数据不仅是大,它的复杂性和沙里淘金的重要性对于各行各业的企业而言都是一个头疼的问题。因为客户无法在一定时间内使用传统数据库软件工具对大数据内容进行抓取、管理和处理的数据集。因此,专家认为,大数据的真谛就是在海量数据中淘金的过程。
这一观点同HDS不谋而合, 即HDS更关注、处理有意义的大数据。中国的大数据特点十分显著,这些特点促成了今天中国的行业客户面对大数据应用时的需求在一定程度上存在的共性。简而言之可以归结为以下三点:
首先,数据体量大,这些大型的数据集有可能会达到PB规模。这就促使客户数据容量的需求非常显著;其次,数据类别繁琐,囊括了半结构化和非结构化数据,从而促使客户需要借助智能工具,实现对所有类型数据的索引、搜索和发掘。最后,所有的这些大数据应用的需求,都能够为企业带来价值。
HDS专注于利用大数据为企业实现真实的业务价值,也就是所谓的“Internet of Things that matter(关键型物联网)”。利用HDS的IT基础架构、分析、内容、云解决方案及服务,可以说推进了整个世界的数据战略管理和分析。而且HDS能够有效整合信息技术(IT)和运营技术(OT),从而为企业和社会的转型及发展提供有价值的商业洞察。从而满足上述不同行业客户对大数据的应用需求。
适用于各行灵活方案
确实,HDS基于对云计算和大数据的深入研究,提供的IT基础架构、分析、内容、云解决方案及服务,已经帮助客户应对在医疗、生命科学、能源研究、社会基础设施等各领域的诸多挑战和需求。
首先,针对大数据的容量需求,HDS 的第一大“利器”是针对结构化数据的虚拟存储平台(Virtual Storage Platform,VSP)是业内唯一可进行三维扩展的存储平台:(1)纵向扩展,在单一单元中增加处理器、连接性和容量,从而优化开放系统与大型机环境的性能;(2)横向扩展,满足不断升级的服务器需求和容量要求;(3)纵深扩展,优化多厂商存储环境,从而保证所有存储资产的投资回报。目前,借助HUS中型企业可以在不影响性能的情况下能够扩展系统容量达到近3PB,自动更正性能问题,通过动态虚拟控制器实现快速预配置。此外,通过VSP的虚拟化,大型企业可以创建接近四分之一EB容量的存储池。
其次,针对大数据最于难应对的非结构化数据,HDS 的应对“利器”是内容归档平台HCP(Hitachi Content Platform),它能把结构化和非结构化数据集成到一个单一的动态归档架构中,同时有效消除各种应用的冗余数据。另外,HDI(Hitachi Data Ingestor)能与HCP 紧密结合,将HCP 数据快速、安全地分发到用户和现有应用程序,从而实现区域的数据分享。
最后,所有的大数据方案都是为了给客户带来大价值。这也是关注、处理有价值数据的HDS的一贯宗旨。HDS的先进大数据方案和服务,确保了客户IT投资的价值并充分发掘数据资产的价值。HDS VSP 可实现将其全部虚拟化,并将同一类型的硬盘(如SSD、SAS、SATA)重新“捆绑”在一起。HDS 还采用了动态分层技术。针对结构化数据的存取,一定要“快”。HDS VSP可以根据数据被调用的频率,自动将常用的数据搬到最高层,提高效率。
另外,HDS 虽然拥有庞大的数据,但是躺在那里睡觉的数据是没有任何价值的,只有盘活这些数据,才能体现出数据资产的价值。利用HCP,就像使用Google 搜索网络内容一样在其内部网络上轻松快捷地搜索所需内容。为了不增加用户的负担,HCP 不会给用户造成新的存储孤岛,也不需要更多的软件工具和管理界面,而是为用户提供了一个单一管理界面,为用户实现包括HCP 在内的整个HDS 的分层存储环境的监测、报告与控制,从而降低了运营成本,最大化地实现投资回报率。
HDS专注于利用大数据为企业实现真实的业务价值。利用HDS的IT基础架构、分析、内容、云解决方案及服务,HDS能够有效帮助各行业客户整合信息技术(IT)和运营技术(OT),为企业和社会的转型及发展提供有价值的商业洞察。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14