
大数据让消费意愿更透明_数据分析师
当互联网走进千家万户,当它带给人们方便、效率和乐趣的同时,还产生了一个很神奇的东西,那就是数据。因其数量惊人、覆盖面广、结构复杂,人们称之为大数据。
对大数据价值的发现和深挖,成为互联网+的一个重要方面。
那么,在汽车消费领域,大数据对消费者有什么现实意义?
在今年第六届全球汽车论坛上,以“洞察汽车消费者:大数据的作用”为主题的头脑风暴对话中,长安汽车产品策划部副部长余成龙、汽车之家副总裁韩松、德勤中国汽车行业管理咨询合伙人何马克(美国)与主持人《汽车观察》杂志总编辑刘小勇,密切互动,共同探讨大数据时代,汽车消费者将受到哪些有益影响……
制造更符合消费者心愿的汽车
“从汽车制造来看,从产品研发、生产制造到营销服务等,通过大数据,非常有助于生产厂家准确把握消费者意愿,从而带来更令消费者满意的产品。”长安汽车产品策划部副部长余成龙认为,长安汽车对大数据的掌握与运用,让各方面工作都有了全方位的改变,互联网给长安带来了思维的变革、商业的变革和管理的变革。
在生产制造领域,长安汽车已经充分利用大数据的挖掘和利用,助力数字化工厂的实现,提升生产效率降低成本。
在服务营销领域,长安汽车利用大数据手段,通过电商渠道和专门的网站,开创了互联网汽车营销私人定制的新时代。长安新奔奔PPO的个性定制就是有力证明。
今年4月,个性定制的长安新奔奔PPO,通过电商渠道,向市场推广。明年,长安汽车通过大数据的熟练运用,将汽车生产个性化定制进一步推广而不是局限在PPO这一款车型,为消费者买车创造更多的自主选择。“在大数据时代,长安汽车所做工作的主旨就是“人为本、创未来”—所有的数据、所有的产品,都落到以人为核心的观念上面来。长安一直坚持这样的理念,所有的产品、设计、制造都必须以用户为核心。”
余成龙说,面对互联网大潮,长安汽车一直坚守一个原则,那就是传统汽车本身所创造的价值、产品、服务是无法取代的。长安汽车以用户为核心的价值观不能变。
对于长安汽车大数据的理解与运用,世界汽车咨询领域有相当影响的德勤机构代表,十分赞同。
“真正掌握大数据就意味着掌握了消费者的消费密码,能够利用有效数据分析消费者购买产品的思维方式,甚至于可以了解在哪个阶段、出于哪种思考而产生的购买行为。”德勤中国汽车行业管理咨询合伙人何马克(美国)回应说。
大数据让汽车服务更精准
如果说,长安汽车大数据运用案例,是汽车企业的一个生动范本,那么,作为正在全方位进入汽车领域、有“野蛮人”“门外汉”之称的互联网企业,怎样借助大数据,涉足汽车领域呢?
汽车之家副总裁韩松,介绍了互联网企业通过大数据助力汽车企业的足迹路径。“汽车大数据的核心价值就是,离消费者近一点、更近一点。”“大数据能让进入4S店的消费者,在尚未产生购买行为之前,4S店就可以掌握消费者的购买行为。浅层次大数据可以监测用户消费行为和消费习惯。”
韩松将大数据对汽车消费影响,进行了深入浅出的清晰描述。“过去,互联网公司为主机厂提供的更多是各种监测软件、各种指数,以及各种后台帮助主机厂看产品营销过程的数据转化。”
这些当下流行的调查思路,不但价值很低且都已过时。韩松认为:“在大数据发展的当下,互联网公司的定位不仅仅是简单的数据分析,而应该利用大数据,从研发、生产、物流配送到中间的品牌、产品、营销传播,包括最后渠道的管理、销售到最后售后服务,整个脉络做最有效的收集和分析,能够更好地帮助汽车企业,用99%的大数据帮助汽车企业甄选1%的有用信息。”
简单讲,大数据的作用就是监测、发现、预见。但要充分挖掘大数据的价值,还有待于互联网企业和汽车企业的深度合作,比如双方的数据库能否在互信的基础上实现共享,甚至在厂家的协调下不同的数据平台能相互打通。
让消费者意愿更透明
来自美国的德勤中国汽车行业管理咨询合伙人何马克从国际视野看大数据对中国汽车消费的影响。
何马克认为,中国一直在说“客户是上帝”,“但没有大数据,就很难知道“上帝”的所思所想”。
“只有娴熟掌握了大数据,才能让“上帝”变得更加透明。”
大数据所带来的趋势因素会影响解决方案的制定。比如,中国有3亿年轻人都有购买汽车的计划。而这3亿年轻人作为潜在客户如何转化成现实消费者?他们的支付能力如何?
在国外,只有40%的消费者对经销商的体验感兴趣,但在中国,这个数据可能会达到60%。利用大数据来分析中国消费者的不同领域、不同的数据会起不同的作用。如何把有效数据协同为一体,挖掘更有用的信息,这就是大数据的价值体现。
所谓数字营销,就是利用用户的消费习惯、浏览习惯来判断用户的购买可能,理想的大数据就是能够更好理解消费者的行为。个性化的数据服务应该是分析消费者决定购买一辆车之前,整个思想历程是什么。
结束语
为什么以前我们对满足消费者需求方面做得不够好?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19